Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Behavioral stress accelerates prostate cancer development in mice
Sazzad Hassan, … , Sandeep Robert Datta, George Kulik
Sazzad Hassan, … , Sandeep Robert Datta, George Kulik
Published January 25, 2013
Citation Information: J Clin Invest. 2013;123(2):874-886. https://doi.org/10.1172/JCI63324.
View: Text | PDF
Research Article

Behavioral stress accelerates prostate cancer development in mice

  • Text
  • PDF
Abstract

Prostate cancer patients have increased levels of stress and anxiety. Conversely, men who take beta blockers, which interfere with signaling from the stress hormones adrenaline and noradrenaline, have a lower incidence of prostate cancer; however, the mechanisms underlying stress–prostate cancer interactions are unknown. Here, we report that stress promotes prostate carcinogenesis in mice in an adrenaline-dependent manner. Behavioral stress inhibited apoptosis and delayed prostate tumor involution both in phosphatase and tensin homolog–deficient (PTEN-deficient) prostate cancer xenografts treated with PI3K inhibitor and in prostate tumors of mice with prostate-restricted expression of c-MYC (Hi-Myc mice) subjected to androgen ablation therapy with bicalutamide. Additionally, stress accelerated prostate cancer development in Hi-Myc mice. The effects of stress were prevented by treatment with the selective β2-adrenergic receptor (ADRB2) antagonist ICI118,551 or by inducible expression of PKA inhibitor (PKI) or of BCL2-associated death promoter (BAD) with a mutated PKA phosphorylation site (BADS112A) in xenograft tumors. Effects of stress were also blocked in Hi-Myc mice expressing phosphorylation-deficient BAD (BAD3SA). These results demonstrate interactions between prostate tumors and the psychosocial environment mediated by activation of an adrenaline/ADRB2/PKA/BAD antiapoptotic signaling pathway. Our findings could be used to identify prostate cancer patients who could benefit from stress reduction or from pharmacological inhibition of stress-induced signaling.

Authors

Sazzad Hassan, Yelena Karpova, Daniele Baiz, Dana Yancey, Ashok Pullikuth, Anabel Flores, Thomas Register, J. Mark Cline, Ralph D’Agostino Jr., Nika Danial, Sandeep Robert Datta, George Kulik

×

Figure 7

Stress delays bicalutamide-induced involution and apoptosis in Hi-Myc prostates via the ADRB2/BAD pathway.

Options: View larger image (or click on image) Download as PowerPoint
Stress delays bicalutamide-induced involution and apoptosis in Hi-Myc pr...
Hi-Myc mice were subjected to subcutaneous injection of bicalutamide (bicalut.; 50 mg/kg, once daily) and recurrent 1-hour immobilization stress at 12-hour intervals for 3 consecutive days; blood and prostates were collected immediately after the last stress procedure. ICI118,551 was given 30 minutes before stress. (A) Stress delayed bicalutamide-induced prostate involution in Hi-Myc mice. Mouse prostates (AP, DLP, and VP lobes) were dissected and weighed, and the total prostate wet weight was expressed as mg/25 g body weight. Statistically significant differences were observed between intact and bicalutamide-treated intact Hi-Myc mice (P = 0.01) and between bicalutamide-treated intact and stressed Hi-Myc mice (P = 0.002). The effect of bicalutamide on prostate weight was completely eliminated with ICI118,551 (P = 0.54) and significantly reduced from 2- to 0.2-fold in Hi-MycBAD3SA/WT mice (P = 0.049). Representative images of prostates of Hi-Myc intact and stressed mice treated with bicalutamide are also shown. (B) Stress delayed bicalutamide-induced apoptosis in DLP glands of Hi-Myc mice (P = 0.002). The effect of stress on bicalutamide-induced apoptosis was eliminated in Hi-Myc mice injected with ICI118,551 (P = 0.84) and in compound transgenic Hi-MycBAD3SA/WT mice (P = 0.47). Representative images of cleaved caspase-3 IHC-stained sections from DLP of intact and stressed Hi-Myc mice treated with bicalutamide are also shown. Scale bars: 50 μm. Insets show the original images (×40 objective) enlarged ×2.33.

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts