Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Behavioral stress accelerates prostate cancer development in mice
Sazzad Hassan, Yelena Karpova, Daniele Baiz, Dana Yancey, Ashok Pullikuth, Anabel Flores, Thomas Register, J. Mark Cline, Ralph D’Agostino Jr., Nika Danial, Sandeep Robert Datta, George Kulik
Sazzad Hassan, Yelena Karpova, Daniele Baiz, Dana Yancey, Ashok Pullikuth, Anabel Flores, Thomas Register, J. Mark Cline, Ralph D’Agostino Jr., Nika Danial, Sandeep Robert Datta, George Kulik
View: Text | PDF
Research Article

Behavioral stress accelerates prostate cancer development in mice

  • Text
  • PDF
Abstract

Prostate cancer patients have increased levels of stress and anxiety. Conversely, men who take beta blockers, which interfere with signaling from the stress hormones adrenaline and noradrenaline, have a lower incidence of prostate cancer; however, the mechanisms underlying stress–prostate cancer interactions are unknown. Here, we report that stress promotes prostate carcinogenesis in mice in an adrenaline-dependent manner. Behavioral stress inhibited apoptosis and delayed prostate tumor involution both in phosphatase and tensin homolog–deficient (PTEN-deficient) prostate cancer xenografts treated with PI3K inhibitor and in prostate tumors of mice with prostate-restricted expression of c-MYC (Hi-Myc mice) subjected to androgen ablation therapy with bicalutamide. Additionally, stress accelerated prostate cancer development in Hi-Myc mice. The effects of stress were prevented by treatment with the selective β2-adrenergic receptor (ADRB2) antagonist ICI118,551 or by inducible expression of PKA inhibitor (PKI) or of BCL2-associated death promoter (BAD) with a mutated PKA phosphorylation site (BADS112A) in xenograft tumors. Effects of stress were also blocked in Hi-Myc mice expressing phosphorylation-deficient BAD (BAD3SA). These results demonstrate interactions between prostate tumors and the psychosocial environment mediated by activation of an adrenaline/ADRB2/PKA/BAD antiapoptotic signaling pathway. Our findings could be used to identify prostate cancer patients who could benefit from stress reduction or from pharmacological inhibition of stress-induced signaling.

Authors

Sazzad Hassan, Yelena Karpova, Daniele Baiz, Dana Yancey, Ashok Pullikuth, Anabel Flores, Thomas Register, J. Mark Cline, Ralph D’Agostino Jr., Nika Danial, Sandeep Robert Datta, George Kulik

×

Figure 3

Activation of pBADS112 is necessary for stress- or adrenaline-induced protection from apoptosis in prostate cancer xenografts.

Options: View larger image (or click on image) Download as PowerPoint
Activation of pBADS112 is necessary for stress- or adrenaline-induced pr...
(A) Analysis of C42LucBAD1SA xenograft tumors by Western blotting. ZSTK474 inhibited pAktS473 and pBADS112 and induced cleavage of PARP and caspase-3. Stress or adrenaline induced pBADS112 and pCREBS133 and inhibited cleavage of PARP and caspase-3. Effects of stress or adrenaline on apoptosis (cleavage of caspase-3 and PARP) were blocked by doxycycline-induced expression of mutant HA-BADS112A. Arrowheads denote HA-BAD1SA (top) and endogenous BAD (bottom). The inset at right from a pBAD blot shows lysates of C42LucBAD cells that served as positive control for phosphorylated HA-BAD. Mutant HA-BADS112A (lanes 5–7) could not be phosphorylated and was not recognized by pBADS112-specific antibodies. (B and C) Effects of stress or adrenaline on tumor luminescence depend on pBADS112. (B) In mice that did not receive doxycycline, luminescence in ZSTK+stress and ZSTK+adren groups was highly significantly different compared with the ZSTK group (P < 0.0001 for both). (C) These differences were completely eliminated by doxycycline-induced expression of pBADS112-deficient HA-BAD1SA (P > 0.65 and P > 0.52, respectively). Error bars in B and C show the SD from the average of measurements in at least 4 mice.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts