Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
ER stress–mediated autophagy promotes Myc-dependent transformation and tumor growth
Lori S. Hart, John T. Cunningham, Tatini Datta, Souvik Dey, Feven Tameire, Stacey L. Lehman, Bo Qiu, Haiyan Zhang, George Cerniglia, Meixia Bi, Yan Li, Yan Gao, Huayi Liu, Changhong Li, Amit Maity, Andrei Thomas-Tikhonenko, Alexander E. Perl, Albert Koong, Serge Y. Fuchs, J. Alan Diehl, Ian G. Mills, Davide Ruggero, Constantinos Koumenis
Lori S. Hart, John T. Cunningham, Tatini Datta, Souvik Dey, Feven Tameire, Stacey L. Lehman, Bo Qiu, Haiyan Zhang, George Cerniglia, Meixia Bi, Yan Li, Yan Gao, Huayi Liu, Changhong Li, Amit Maity, Andrei Thomas-Tikhonenko, Alexander E. Perl, Albert Koong, Serge Y. Fuchs, J. Alan Diehl, Ian G. Mills, Davide Ruggero, Constantinos Koumenis
View: Text | PDF
Research Article Oncology

ER stress–mediated autophagy promotes Myc-dependent transformation and tumor growth

  • Text
  • PDF
Abstract

The proto-oncogene c-Myc paradoxically activates both proliferation and apoptosis. In the pathogenic state, c-Myc–induced apoptosis is bypassed via a critical, yet poorly understood escape mechanism that promotes cellular transformation and tumorigenesis. The accumulation of unfolded proteins in the ER initiates a cellular stress program termed the unfolded protein response (UPR) to support cell survival. Analysis of spontaneous mouse and human lymphomas demonstrated significantly higher levels of UPR activation compared with normal tissues. Using multiple genetic models, we demonstrated that c-Myc and N-Myc activated the PERK/eIF2α/ATF4 arm of the UPR, leading to increased cell survival via the induction of cytoprotective autophagy. Inhibition of PERK significantly reduced Myc-induced autophagy, colony formation, and tumor formation. Moreover, pharmacologic or genetic inhibition of autophagy resulted in increased Myc-dependent apoptosis. Mechanistically, we demonstrated an important link between Myc-dependent increases in protein synthesis and UPR activation. Specifically, by employing a mouse minute (L24+/–) mutant, which resulted in wild-type levels of protein synthesis and attenuation of Myc-induced lymphomagenesis, we showed that Myc-induced UPR activation was reversed. Our findings establish a role for UPR as an enhancer of c-Myc–induced transformation and suggest that UPR inhibition may be particularly effective against malignancies characterized by c-Myc overexpression.

Authors

Lori S. Hart, John T. Cunningham, Tatini Datta, Souvik Dey, Feven Tameire, Stacey L. Lehman, Bo Qiu, Haiyan Zhang, George Cerniglia, Meixia Bi, Yan Li, Yan Gao, Huayi Liu, Changhong Li, Amit Maity, Andrei Thomas-Tikhonenko, Alexander E. Perl, Albert Koong, Serge Y. Fuchs, J. Alan Diehl, Ian G. Mills, Davide Ruggero, Constantinos Koumenis

×

Figure 7

Model of the role of UPR activation in cytoprotection during Myc-dependent transformation.

Options: View larger image (or click on image) Download as PowerPoint
Model of the role of UPR activation in cytoprotection during Myc-depende...
c-Myc activation increases protein synthesis, resulting in UPR activation. This is attenuated by genetically reducing protein synthesis (L24 mouse minute) or pharmacologically increasing chaperone activity (4-PBA). In the presence of PERK, cytoprotective autophagy (LC3 processing, p62 degradation) is induced and is required for cell survival (ULK1 and Atg5 dependence). Loss of PERK results in significantly increased apoptosis, primarily through increase Ca2+ release form the ER and lack of autophagy.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts