Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Plasmacytoid dendritic cells promote rotavirus-induced human and murine B cell responses
Emily M. Deal, … , Eugene C. Butcher, Harry B. Greenberg
Emily M. Deal, … , Eugene C. Butcher, Harry B. Greenberg
Published May 1, 2013
Citation Information: J Clin Invest. 2013;123(6):2464-2474. https://doi.org/10.1172/JCI60945.
View: Text | PDF
Research Article Immunology

Plasmacytoid dendritic cells promote rotavirus-induced human and murine B cell responses

  • Text
  • PDF
Abstract

B cell–dependent immunity to rotavirus, an important intestinal pathogen, plays a significant role in viral clearance and protects against reinfection. Human in vitro and murine in vivo models of rotavirus infection were used to delineate the role of primary plasmacytoid DCs (pDCs) in initiating B cell responses. Human pDCs were necessary and sufficient for B cell activation induced by rotavirus. Type I IFN recognition by B cells was essential for rotavirus-mediated B cell activation in vitro and murine pDCs and IFN-α/β–mediated B cell activation after in vivo intestinal rotavirus infection. Furthermore, rotavirus-specific serum and mucosal antibody responses were defective in mice lacking functional pDCs at the time of infection. These data demonstrate that optimal B cell activation and virus-specific antibody secretion following mucosal infection were a direct result of pDC-derived type I IFN. Importantly, viral shedding significantly increased in pDC-deficient mice, suggesting that pDC-dependent antibody production influences viral clearance. Thus, mucosal pDCs critically influence the course of rotavirus infection through rotavirus recognition and subsequent IFN production and display powerful adjuvant properties to initiate and enhance humoral immunity.

Authors

Emily M. Deal, Katharina Lahl, Carlos F. Narváez, Eugene C. Butcher, Harry B. Greenberg

×

Figure 2

pDCs mediate human B cell activation by soluble type I IFN.

Options: View larger image (or click on image) Download as PowerPoint
pDCs mediate human B cell activation by soluble type I IFN.
(A) B cell a...
(A) B cell activation was assessed by flow cytometry analysis of CD69 expression by B cells cultured for 12 hours in the presence (+) or absence (–) of pDCs or RV as indicated. Cells were cocultured, allowing pDC/B cell contact (white), or with pDCs plated within Transwell inserts (black). *P < 0.05, Mann-Whitney; n = 3–4. (B) Representative histograms of CD69 expression by purified human B cells 12 hours after stimulus with 1:20 dilutions of supernatants from overnight cultures of pDCs exposed to mock (red) or RV (blue) stimulus. One experiment representative of 10 is presented. (C) CD69 expression was assessed by flow cytometry following overnight stimulus of purified B cells with supernatants from mock or RV-stimulated pDCs in the presence of the indicated neutralizing antibodies (αIFN-α, αIFN-β or αIFN-α, αIFN-β, and αIFN-receptor, indicated as “type I IFN”). The resulting increase in B cell activation is expressed as a percentage of that observed with the appropriate isotype control. **P = 0.002 vs. isotype, αIFN-α and αIFN-β, repeated measures ANOVA with Tukey’s multiple comparison test; n = 3. (D) CD69 expression by purified B cells following overnight stimulus with mock-stimulated pDC supernatant (black), RV-stimulated pDC supernatant (green), RV-stimulated pDCs (blue), or IFN-α (red). Data depict 1 donor and are representative of 6 experiments.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts