Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
WAVE1 mediates suppression of phagocytosis by phospholipid-derived DAMPs
Ulrich Matt, Omar Sharif, Rui Martins, Tanja Furtner, Lorene Langeberg, Riem Gawish, Immanuel Elbau, Ana Zivkovic, Karin Lakovits, Olga Oskolkova, Bianca Doninger, Andreas Vychytil, Thomas Perkmann, Gernot Schabbauer, Christoph J. Binder, Valery N. Bochkov, John D. Scott, Sylvia Knapp
Ulrich Matt, Omar Sharif, Rui Martins, Tanja Furtner, Lorene Langeberg, Riem Gawish, Immanuel Elbau, Ana Zivkovic, Karin Lakovits, Olga Oskolkova, Bianca Doninger, Andreas Vychytil, Thomas Perkmann, Gernot Schabbauer, Christoph J. Binder, Valery N. Bochkov, John D. Scott, Sylvia Knapp
View: Text | PDF | Erratum
Research Article Immunology

WAVE1 mediates suppression of phagocytosis by phospholipid-derived DAMPs

  • Text
  • PDF
Abstract

Clearance of invading pathogens is essential to preventing overwhelming inflammation and sepsis that are symptomatic of bacterial peritonitis. Macrophages participate in this innate immune response by engulfing and digesting pathogens, a process called phagocytosis. Oxidized phospholipids (OxPL) are danger-associated molecular patterns (DAMPs) generated in response to infection that can prevent the phagocytic clearance of bacteria. We investigated the mechanism underlying OxPL action in macrophages. Exposure to OxPL induced alterations in actin polymerization, resulting in spreading of peritoneal macrophages and diminished uptake of E. coli. Pharmacological and cell-based studies showed that an anchored pool of PKA mediates the effects of OxPL. Gene silencing approaches identified the A-kinase anchoring protein (AKAP) WAVE1 as an effector of OxPL action in vitro. Chimeric Wave1–/– mice survived significantly longer after infection with E. coli and OxPL treatment in vivo. Moreover, we found that endogenously generated OxPL in human peritoneal dialysis fluid from end-stage renal failure patients inhibited phagocytosis via WAVE1. Collectively, these data uncover an unanticipated role for WAVE1 as a critical modulator of the innate immune response to severe bacterial infections.

Authors

Ulrich Matt, Omar Sharif, Rui Martins, Tanja Furtner, Lorene Langeberg, Riem Gawish, Immanuel Elbau, Ana Zivkovic, Karin Lakovits, Olga Oskolkova, Bianca Doninger, Andreas Vychytil, Thomas Perkmann, Gernot Schabbauer, Christoph J. Binder, Valery N. Bochkov, John D. Scott, Sylvia Knapp

×

Figure 6

OxPL in human PDF inhibit phagocytosis in the presence of WAVE1.

Options: View larger image (or click on image) Download as PowerPoint
OxPL in human PDF inhibit phagocytosis in the presence of WAVE1.
(A) Lev...
(A) Levels of oxidized phosphocholine were measured using the EO6 mAb or an isotype control in PDF from 2 patients undergoing peritoneal dialysis. (B) Murine primary peritoneal macrophages were incubated for 15 minutes with PDF of 1 representative patient (patient A), and phagocytosis of E. coli after 60 minutes was assessed by FACS. Ig depletion was done with protein G beads. (C) PLF from Ldlr–/–Rag–/– mice on normal diet (ND) or high-fat diet (HFD) was placed on primary peritoneal macrophages in the presence or absence of Ht-31 (100 μM) and phagocytosis of E. coli after 60 minutes. (D) RAW 264.7 macrophages were either preincubated with EO6 antibody or isotype control (1 μg/ml) for 1 hour, then with OxPL or DMPC (5 μg/ml) for 15 minutes. Phagocytosis of E. coli was assessed after 60 minutes by FACS. Control assays were done in RPMI. (E) PDF of patient A was subjected to chloroform extraction, and the resultant water or lipid fraction was added to RAW 264.7 cells 15 minutes prior to addition of E. coli. Phagocytosis was assayed after 60 minutes by FACS. Control assays were done in RPMI. (F) RAW 264.7 macrophages were incubated for 15 minutes with IgG-depleted PDF that had been pretreated with either EO6 or isotype control antibody (10 μg/ml) for 1 hour, and phagocytosis of E. coli after 60 minutes was assessed by FACS. (G) WT and Wave1–/– primary peritoneal macrophages were incubated with Ig-depleted PDF from patient A, and phagocytosis of E. coli was determined was analyzed. Data are mean ± SEM of at least duplicate experiments; *P < 0.05; **P < 0.01; ***P < 0.001 versus corresponding control.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts