Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Estrogen promotes Leydig cell engulfment by macrophages in male infertility
Wanpeng Yu, … , Ituro Inoue, Xiangdong Li
Wanpeng Yu, … , Ituro Inoue, Xiangdong Li
Published April 24, 2014
Citation Information: J Clin Invest. 2014;124(6):2709-2721. https://doi.org/10.1172/JCI59901.
View: Text | PDF
Research Article Endocrinology

Estrogen promotes Leydig cell engulfment by macrophages in male infertility

  • Text
  • PDF
Abstract

Male infertility accounts for almost half of infertility cases worldwide. A subset of infertile men exhibit reduced testosterone and enhanced levels of estradiol (E2), though it is unclear how increased E2 promotes deterioration of male fertility. Here, we utilized a transgenic mouse strain that overexpresses human CYP19, which encodes aromatase (AROM+ mice), and mice with knockout of Esr1, encoding estrogen receptor α (ERαKO mice), to analyze interactions between viable Leydig cells (LCs) and testicular macrophages that may lead to male infertility. In AROM+ males, enhanced E2 promoted LC hyperplasia and macrophage activation via ERα signaling. E2 stimulated LCs to produce growth arrest–specific 6 (GAS6), which mediates phagocytosis of apoptotic cells by bridging cells with surface exposed phosphatidylserine (PS) to macrophage receptors, including the tyrosine kinases TYRO3, AXL, and MER. Overproduction of E2 increased apoptosis-independent extrusion of PS on LCs, which in turn promoted engulfment by E2/ERα-activated macrophages that was mediated by AXL-GAS6-PS interaction. We further confirmed E2-dependant engulfment of LCs by real-time 3D imaging. Furthermore, evaluation of molecular markers in the testes of patients with nonobstructive azoospermia (NOA) revealed enhanced expression of CYP19, GAS6, and AXL, which suggests that the AROM+ mouse model reflects human infertility. Together, these results suggest that GAS6 has a potential as a clinical biomarker and therapeutic target for male infertility.

Authors

Wanpeng Yu, Han Zheng, Wei Lin, Astushi Tajima, Yong Zhang, Xiaoyan Zhang, Hongwen Zhang, Jihua Wu, Daishu Han, Nafis A. Rahman, Kenneth S. Korach, George Fu Gao, Ituro Inoue, Xiangdong Li

×

Figure 2

Immunohistochemistry and gene expression profile analysis by qPCR for steroidogenesis and macrophage activation in testes.

Options: View larger image (or click on image) Download as PowerPoint
Immunohistochemistry and gene expression profile analysis by qPCR for st...
(A and B) Immunohistochemical staining for (A) 3βHSD and (B) PCNA in 2-month-old WT testes. As there were no substantial histological alterations in testis between 2 and 10 months, we used 2-month-old WT testes as controls. (C–H) 3βHSD (arrowheads) and PCNA (arrows) in LCs in testes of AROM+ mice at 2 (C and D), 5 (E and F), and 10 (G and H) months of age. (I) Gene expression of Star, Cyp17a1, Hsd17b3, Hsd3b1, and Cyp11a1 in 5-month-old WT, AROM+ (untreated or treated with tamoxifen or letrozole for 3 months), and AROM+/ERαKO males (n = 6 per group). Significant differences between groups (P ≤ 0.05) are denoted by different letters above the bars. (J and K) Age-dependent expression of Cd69, Gpnmb, Lgals3, Mpeg1, Gas6, Axl, Tyro3, and Mer in WT and AROM+ males at 2, 5, and 10 months of age. *P < 0.05, ‡P < 0.01, §P < 0.001 vs. age-matched WT. Scale bars: 50 μm.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts