Abstract

Male infertility accounts for almost half of infertility cases worldwide. A subset of infertile men exhibit reduced testosterone and enhanced levels of estradiol (E2), though it is unclear how increased E2 promotes deterioration of male fertility. Here, we utilized a transgenic mouse strain that overexpresses human CYP19, which encodes aromatase (AROM+ mice), and mice with knockout of Esr1, encoding estrogen receptor α (ERαKO mice), to analyze interactions between viable Leydig cells (LCs) and testicular macrophages that may lead to male infertility. In AROM+ males, enhanced E2 promoted LC hyperplasia and macrophage activation via ERα signaling. E2 stimulated LCs to produce growth arrest–specific 6 (GAS6), which mediates phagocytosis of apoptotic cells by bridging cells with surface exposed phosphatidylserine (PS) to macrophage receptors, including the tyrosine kinases TYRO3, AXL, and MER. Overproduction of E2 increased apoptosis-independent extrusion of PS on LCs, which in turn promoted engulfment by E2/ERα-activated macrophages that was mediated by AXL-GAS6-PS interaction. We further confirmed E2-dependant engulfment of LCs by real-time 3D imaging. Furthermore, evaluation of molecular markers in the testes of patients with nonobstructive azoospermia (NOA) revealed enhanced expression of CYP19, GAS6, and AXL, which suggests that the AROM+ mouse model reflects human infertility. Together, these results suggest that GAS6 has a potential as a clinical biomarker and therapeutic target for male infertility.

Authors

Wanpeng Yu, Han Zheng, Wei Lin, Astushi Tajima, Yong Zhang, Xiaoyan Zhang, Hongwen Zhang, Jihua Wu, Daishu Han, Nafis A. Rahman, Kenneth S. Korach, George Fu Gao, Ituro Inoue, Xiangdong Li

×

Download this citation for these citation managers:

Or, download this citation in these formats:

If you experience problems using these citation formats, send us feedback.

Advertisement