Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Regulatory B cell production of IL-10 inhibits lymphoma depletion during CD20 immunotherapy in mice
Mayuka Horikawa, … , Takashi Matsushita, Thomas F. Tedder
Mayuka Horikawa, … , Takashi Matsushita, Thomas F. Tedder
Published October 24, 2011
Citation Information: J Clin Invest. 2011;121(11):4268-4280. https://doi.org/10.1172/JCI59266.
View: Text | PDF
Research Article Hematology

Regulatory B cell production of IL-10 inhibits lymphoma depletion during CD20 immunotherapy in mice

  • Text
  • PDF
Abstract

Current therapies for non-Hodgkin lymphoma commonly include CD20 mAb to deplete tumor cells. However, the response is not durable in a substantial proportion of patients. Herein, we report our studies in mice testing the hypothesis that heterogeneity in endogenous tissue CD20+ B cell depletion influences in vivo lymphoma therapy. Using highly effective CD20 mAbs that efficiently deplete endogenous mature B cells and homologous CD20+ primary lymphoma cells through monocyte- and antibody-dependent mechanisms, we found that lymphoma depletion and survival were reduced when endogenous host B cells were not depleted, particularly a rare IL-10–producing B cell subset (B10 cells) known to regulate inflammation and autoimmunity. Even small numbers of adoptively transferred B10 cells dramatically suppressed CD20 mAb–mediated lymphoma depletion by inhibiting mAb-mediated monocyte activation and effector function through IL-10–dependent mechanisms. However, the activation of innate effector cells using a TLR3 agonist that did not activate B10 cells overcame the negative regulatory effects of endogenous B10 cells and enhanced lymphoma depletion during CD20 immunotherapy in vivo. Thus, we conclude that endogenous B10 cells are potent negative regulators of innate immunity, with even small numbers of residual B10 cells able to inhibit lymphoma depletion by CD20 mAbs. Consequently, B10 cell removal could provide a way to optimize CD20 mAb–mediated clearance of malignant B cells in patients with non-Hodgkin lymphoma.

Authors

Mayuka Horikawa, Veronique Minard-Colin, Takashi Matsushita, Thomas F. Tedder

×

Figure 10

TLR3 activation enhances CD20 and CD19 mAb immunotherapy for lymphoma.

Options: View larger image (or click on image) Download as PowerPoint
TLR3 activation enhances CD20 and CD19 mAb immunotherapy for lymphoma.
(...
(A) Poly(I:C) significantly enhances CD20 mAb efficacy and survival in Cd20–/– mice following BL3750 cell (106 cells/mouse) transfers. (B) Poly(I:C) significantly enhances CD19 immunotherapy in WT mice given 105 BL3750 cells. (C) Poly(I:C) significantly enhances survival in WT mice given 105 CD20 mAb–resistant BL3750-6 lymphoma cells. (A–C) Mice were given BL3750 cells 1 day before isotype control mAb (white circles, 250 μg), CD20 (250 μg), or CD19 (100 μg) mAb (black circles) treatments. Poly(I:C) (squares, triangles, 150 μg) was either given alone or with mAbs on days 1, 7, 14, and 21 (arrowheads). Significant cumulative survival differences between groups treated with mAbs plus poly(I:C) versus CD20/CD19 mAb alone and poly(I:C) alone are indicated. All mice that survived more than 60 days remained disease free for 6 or more months. (D) BL3750 and BL3750-6 cell-surface CD20, IgM, CD19, and CD22 expression (shaded histogram). Control mAb background staining is shown (thin line), with similar results from 3 or more experiments. Data represent mean ± SEM.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts