Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Parabronchial smooth muscle constitutes an airway epithelial stem cell niche in the mouse lung after injury
Thomas Volckaert, … , Saverio Bellusci, Stijn P. De Langhe
Thomas Volckaert, … , Saverio Bellusci, Stijn P. De Langhe
Published October 10, 2011
Citation Information: J Clin Invest. 2011;121(11):4409-4419. https://doi.org/10.1172/JCI58097.
View: Text | PDF
Research Article Pulmonology

Parabronchial smooth muscle constitutes an airway epithelial stem cell niche in the mouse lung after injury

  • Text
  • PDF
Abstract

During lung development, parabronchial SMC (PSMC) progenitors in the distal mesenchyme secrete fibroblast growth factor 10 (Fgf10), which acts on distal epithelial progenitors to promote their proliferation. β-catenin signaling within PSMC progenitors is essential for their maintenance, proliferation, and expression of Fgf10. Here, we report that this Wnt/Fgf10 embryonic signaling cascade is reactivated in mature PSMCs after naphthalene-induced injury to airway epithelium. Furthermore, we found that this paracrine Fgf10 action was essential for activating surviving variant Clara cells (the cells in the airway epithelium from which replacement epithelial cells originate) located at the bronchoalveolar duct junctions and adjacent to neuroendocrine bodies. After naphthalene injury, PSMCs secreted Fgf10 to activate Notch signaling and induce Snai1 expression in surviving variant Clara cells, which subsequently underwent a transient epithelial to mesenchymal transition to initiate the repair process. Epithelial Snai1 expression was important for regeneration after injury. We have therefore identified PSMCs as a stem cell niche for the variant Clara cells in the lung and established that paracrine Fgf10 signaling from the niche is critical for epithelial repair after naphthalene injury. These findings also have implications for understanding the misregulation of lung repair in asthma and cancer.

Authors

Thomas Volckaert, Erik Dill, Alice Campbell, Caterina Tiozzo, Susan Majka, Saverio Bellusci, Stijn P. De Langhe

×

Figure 4

Fgf10 signaling induces Akt-mediated phosphorylation of β-catenin and maintenance/amplification of variant Clara cells.

Options: View larger image (or click on image) Download as PowerPoint
Fgf10 signaling induces Akt-mediated phosphorylation of β-catenin and ma...
(A–C) Immuno­staining for p-Akt and Scgb1a1 on lungs from control (A), Rosa26-rtTa;Tet-Fgf10 (B), and Rosa26-rtTA;Tet-sFgfr2b (C) mice 3 days after naphthalene treatment. (D–F) Immuno­staining for p–β-catenin–Ser552 and Scgb1a1 on lungs from control (D), Rosa26-rtTa;Tet-Fgf10 (E), and Rosa26-rtTA;Tet-sFgfr2b (F) mice 3 days after naphthalene treatment. (G and H) Immunostaining for Scgb1a1 and Fgfr2b on lungs from control (G) and Rosa26-rtTa;Tet-Fgf10 (H) mice 21 days after naphthalene treatment. White outlines denote the epithelium at the BADJ. (I and J) Immuno­staining for BASC markers Scgb1a1 and Sftpc on lungs from control (I) and Rosa26-rtTa;Tet-Fgf10 (J) mice 21 days after naphthalene treatment. (K) Immuno­staining for CGRP and Sftpc on lungs from Rosa26-rtTa;Tet-Fgf10 mice 21 days after naphthalene treatment. Scale bars: 50 μm (A–F and K); 100 μm (G–J).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts