Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
The intersection of genetic and chemical genomic screens identifies GSK-3α as a target in human acute myeloid leukemia
Versha Banerji, Stacey M. Frumm, Kenneth N. Ross, Loretta S. Li, Anna C. Schinzel, Cynthia K. Hahn, Rose M. Kakoza, Kwan T. Chow, Linda Ross, Gabriela Alexe, Nicola Tolliday, Haig Inguilizian, Ilene Galinsky, Richard M. Stone, Daniel J. DeAngelo, Giovanni Roti, Jon C. Aster, William C. Hahn, Andrew L. Kung, Kimberly Stegmaier
Versha Banerji, Stacey M. Frumm, Kenneth N. Ross, Loretta S. Li, Anna C. Schinzel, Cynthia K. Hahn, Rose M. Kakoza, Kwan T. Chow, Linda Ross, Gabriela Alexe, Nicola Tolliday, Haig Inguilizian, Ilene Galinsky, Richard M. Stone, Daniel J. DeAngelo, Giovanni Roti, Jon C. Aster, William C. Hahn, Andrew L. Kung, Kimberly Stegmaier
View: Text | PDF
Research Article Hematology

The intersection of genetic and chemical genomic screens identifies GSK-3α as a target in human acute myeloid leukemia

  • Text
  • PDF
Abstract

Acute myeloid leukemia (AML) is the most common form of acute leukemia in adults. Long-term survival of patients with AML has changed little over the past decade, necessitating the identification and validation of new AML targets. Integration of genomic approaches with small-molecule and genetically based high-throughput screening holds the promise of improved discovery of candidate targets for cancer therapy. Here, we identified a role for glycogen synthase kinase 3α (GSK-3α) in AML by performing 2 independent small-molecule library screens and an shRNA screen for perturbations that induced a differentiation expression signature in AML cells. GSK-3 is a serine-threonine kinase involved in diverse cellular processes, including differentiation, signal transduction, cell cycle regulation, and proliferation. We demonstrated that specific loss of GSK-3α induced differentiation in AML by multiple measurements, including induction of gene expression signatures, morphological changes, and cell surface markers consistent with myeloid maturation. GSK-3α–specific suppression also led to impaired growth and proliferation in vitro, induction of apoptosis, loss of colony formation in methylcellulose, and anti-AML activity in vivo. Although the role of GSK-3β has been well studied in cancer development, these studies support a role for GSK-3α in AML.

Authors

Versha Banerji, Stacey M. Frumm, Kenneth N. Ross, Loretta S. Li, Anna C. Schinzel, Cynthia K. Hahn, Rose M. Kakoza, Kwan T. Chow, Linda Ross, Gabriela Alexe, Nicola Tolliday, Haig Inguilizian, Ilene Galinsky, Richard M. Stone, Daniel J. DeAngelo, Giovanni Roti, Jon C. Aster, William C. Hahn, Andrew L. Kung, Kimberly Stegmaier

×

Figure 7

GSK-3α loss has anti-AML activity in vivo.

Options: View larger image (or click on image) Download as PowerPoint
GSK-3α loss has anti-AML activity in vivo.
(A) U937-LucNeo cells infecte...
(A) U937-LucNeo cells infected with pLKO.1 vectors against GSK-3α (shGSK3A_5) and lacZ (shControl_2) were injected on day 0. Bioluminescence was quantified as a measure of disease burden. Data are represented as mean ± SEM of 6 mice per cohort. ***P < 0.001 by 2-way repeated-measures ANOVA, with a Bonferroni post-hoc test comparing shGSK3A_5 with shControl_2. (B) Spleen weights were measured on day 20 after injection. There were 5 mice in the shControl_2 cohort and 6 mice in the shGSK3A_5 cohort. Each symbol represents an individual mouse, and horizontal bars represent mean values. **P < 0.01 by Student’s t test. (C) U937-LucNeo cells infected with pLKO.1 vectors against GSK-3α (shGSK3A_8 and shGSK3A_9) and lacZ (shControl_2) were injected on day 0. Bioluminescence was quantified as a measure of disease burden. Data are represented as mean ± SEM of 6 mice per cohort. **P < 0.01, ***P < 0.001 by 2-way repeated-measures ANOVA, with a Bonferroni post-hoc test comparing each shRNA to shControl_2. (D) Survival is shown for mice engrafted with U937-LucNeo cells infected with pLKO.1 vectors against GSK-3α (shGSK3A_6), GSK-3β (shGSK3B_1), and lacZ (shControl_2). Mice were engrafted on day 0. There were 6 mice in each cohort, with statistical significance calculated by log-rank test. *P < 0.05, shGSK3A_6 survival curve relative to shControl_2 survival curve.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts