Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Perlecan domain V is neuroprotective and proangiogenic following ischemic stroke in rodents
Boyeon Lee, Douglas Clarke, Abraham Al Ahmad, Michael Kahle, Christi Parham, Lisa Auckland, Courtney Shaw, Mehmet Fidanboylu, Anthony Wayne Orr, Omolara Ogunshola, Andrzej Fertala, Sarah A. Thomas, Gregory J. Bix
Boyeon Lee, Douglas Clarke, Abraham Al Ahmad, Michael Kahle, Christi Parham, Lisa Auckland, Courtney Shaw, Mehmet Fidanboylu, Anthony Wayne Orr, Omolara Ogunshola, Andrzej Fertala, Sarah A. Thomas, Gregory J. Bix
View: Text | PDF | Corrigendum
Research Article Angiogenesis

Perlecan domain V is neuroprotective and proangiogenic following ischemic stroke in rodents

  • Text
  • PDF
Abstract

Stroke is the leading cause of long-term disability and the third leading cause of death in the United States. While most research thus far has focused on acute stroke treatment and neuroprotection, the exploitation of endogenous brain self-repair mechanisms may also yield therapeutic strategies. Here, we describe a distinct type of stroke treatment, the naturally occurring extracellular matrix fragment of perlecan, domain V, which we found had neuroprotective properties and enhanced post-stroke angiogenesis, a key component of brain repair, in rodent models of stroke. In both rat and mouse models, Western blot analysis revealed elevated levels of perlecan domain V. When systemically administered 24 hours after stroke, domain V was well tolerated, reached infarct and peri-infarct brain vasculature, and restored stroke-affected motor function to baseline pre-stroke levels in these multiple stroke models in both mice and rats. Post-stroke domain V administration increased VEGF levels via a mechanism involving brain endothelial cell α5β1 integrin, and the subsequent neuroprotective and angiogenic actions of domain V were in turn mediated via VEGFR. These results suggest that perlecan domain V represents a promising approach for stroke treatment.

Authors

Boyeon Lee, Douglas Clarke, Abraham Al Ahmad, Michael Kahle, Christi Parham, Lisa Auckland, Courtney Shaw, Mehmet Fidanboylu, Anthony Wayne Orr, Omolara Ogunshola, Andrzej Fertala, Sarah A. Thomas, Gregory J. Bix

×

Figure 9

DV effects are mediated via the α5β1 integrin in vivo.

Options: View larger image (or click on image) Download as PowerPoint
DV effects are mediated via the α5β1 integrin in vivo.
(A) Anti-α5β1 Wes...
(A) Anti-α5β1 Western blot analysis from PSD 3 mouse brain tissue treated as labeled, with GAPDH as internal control. (B) α5β1 immunohistochemistry of mouse PSD 3 peri-infarct brain tissue with or without DV treatment. Scale bar: 10 μm. (C) Quantification of mean ischemic lesion volumes of stroke WT mice on PSD 1–3 as labeled (*P < 0.05, n = 15 per treatment condition per PSD). (D) Cresyl violet staining, caspase-3 17- to 20-kDa cleavage product immunostaining, and TUNEL staining with PI of peri-infarct brain regions as labeled. Scale bars: 10 μm. (E) Vibrissae-elicited forelimb placement test on WT mice treated as labeled (n = 15 mice per condition from 3 separate experiments with 5 mice each). (F) Von Willebrand factor immunohistochemistry (green) on PSD 5 from WT mice treated as labeled. Scale bar: 10 μm. (G) Peri-infarct blood vessel quantification as labeled (*P < 0.05, **P < 0.01 compared with PBS + IgG on the same day, n = 20 images analyzed per animal, 10 animals per experimental condition). (H) Anti-VEGF Western blot analysis of mouse stroke hemispheres with internal GAPDH as control. (I) Optical density quantification of VEGF Western blot analysis as shown in H (**P < 0.01, n = 5 per experimental condition).

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts