Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Inhibition of HIV transmission in human cervicovaginal explants and humanized mice using CD4 aptamer-siRNA chimeras
Lee Adam Wheeler, Radiana Trifonova, Vladimir Vrbanac, Emre Basar, Shannon McKernan, Zhan Xu, Edward Seung, Maud Deruaz, Tim Dudek, Jon Ivar Einarsson, Linda Yang, Todd M. Allen, Andrew D. Luster, Andrew M. Tager, Derek M. Dykxhoorn, Judy Lieberman
Lee Adam Wheeler, Radiana Trifonova, Vladimir Vrbanac, Emre Basar, Shannon McKernan, Zhan Xu, Edward Seung, Maud Deruaz, Tim Dudek, Jon Ivar Einarsson, Linda Yang, Todd M. Allen, Andrew D. Luster, Andrew M. Tager, Derek M. Dykxhoorn, Judy Lieberman
View: Text | PDF
Research Article AIDS/HIV

Inhibition of HIV transmission in human cervicovaginal explants and humanized mice using CD4 aptamer-siRNA chimeras

  • Text
  • PDF
Abstract

The continued spread of the HIV epidemic underscores the need to interrupt transmission. One attractive strategy is a topical vaginal microbicide. Sexual transmission of herpes simplex virus type 2 (HSV-2) in mice can be inhibited by intravaginal siRNA application. To overcome the challenges of knocking down gene expression in immune cells susceptible to HIV infection, we used chimeric RNAs composed of an aptamer fused to an siRNA for targeted gene knockdown in cells bearing an aptamer-binding receptor. Here, we showed that CD4 aptamer-siRNA chimeras (CD4-AsiCs) specifically suppress gene expression in CD4+ T cells and macrophages in vitro, in polarized cervicovaginal tissue explants, and in the female genital tract of humanized mice. CD4-AsiCs do not activate lymphocytes or stimulate innate immunity. CD4-AsiCs that knock down HIV genes and/or CCR5 inhibited HIV infection in vitro and in tissue explants. When applied intravaginally to humanized mice, CD4-AsiCs protected against HIV vaginal transmission. Thus, CD4-AsiCs could be used as the active ingredient of a microbicide to prevent HIV sexual transmission.

Authors

Lee Adam Wheeler, Radiana Trifonova, Vladimir Vrbanac, Emre Basar, Shannon McKernan, Zhan Xu, Edward Seung, Maud Deruaz, Tim Dudek, Jon Ivar Einarsson, Linda Yang, Todd M. Allen, Andrew D. Luster, Andrew M. Tager, Derek M. Dykxhoorn, Judy Lieberman

×

Figure 2

CD4-AsiCs inhibit HIV replication in vitro.

Options: View larger image (or click on image) Download as PowerPoint
CD4-AsiCs inhibit HIV replication in vitro.
MDMs (A–C) and CD4+ T cells ...
MDMs (A–C) and CD4+ T cells (D and E) were infected for 48 hours with HIV-1BaL and HIV-1IIIb, respectively, and then treated with CD4-AsiCs or PSMA-AsiCs bearing gag and vif (g/v) siRNAs. Scrambled siRNA chimeras and CD4 aptamers were controls. Transfection controls used OF (A and B) or nucleofection (D and E). (A and D) Intracellular p24 expression, relative to infected mock-treated cultures, was measured by flow cytometry 48 hours later. CD4-AsiCs inhibited HIV replication (mean ± SEM normalized to mock; n = 3; *P < 0.05, **P < 0.005, 2-tailed t test). Insets show representative histograms of MDMs and CD4+ T lymphocytes treated with gag and vif CD4-AsiCs (gray, uninfected; blue, infected mock-treated; red, infected CD4-AsiC–treated). (C) HIV infection was also evaluated by fluorescence in situ hybridization (original magnification, ×60) using FITC-labeled probes complementary to HIV genomic RNA. HIV RNA was virtually undetectable in MDMs treated with 4 μM total final concentration of CD4-AsiCs. (B and E) To evaluate gene silencing independently of the effect of the CD4 aptamer on blocking viral entry, HIV replication was assessed by infection with VSV(G)-pseudotyped virus containing a luciferase reporter gene. Primary MDMs and CD4+ T cells were pretreated for 48 hours before infection with 4-μM mixtures of CD4- or PSMA-AsiCs targeting gag and vif or containing scrambled siRNAs. Luciferase activity, measured 48 hours later, was significantly inhibited in cells treated with CD4-AsiCs directed against either viral or luciferase genes (mean ± SEM normalized to mock; n = 3; *P < 0.05, **P < 0.005).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts