Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Oligonucleotide therapeutic approaches for Huntington disease
Dinah W.Y. Sah, Neil Aronin
Dinah W.Y. Sah, Neil Aronin
Published February 1, 2011
Citation Information: J Clin Invest. 2011;121(2):500-507. https://doi.org/10.1172/JCI45130.
View: Text | PDF
Review Series

Oligonucleotide therapeutic approaches for Huntington disease

  • Text
  • PDF
Abstract

Huntington disease is an autosomal dominant neurodegenerative disorder caused by a toxic expansion in the CAG repeat region of the huntingtin gene. Oligonucleotide approaches based on RNAi and antisense oligonucleotides provide promising new therapeutic strategies for direct intervention through reduced production of the causative mutant protein. Allele-specific and simultaneous mutant and wild-type allele–lowering strategies are being pursued with local delivery to the brain, each with relative merits. Delivery remains a key challenge for translational success, especially with chronic therapy. The potential of disease-modifying oligonucleotide approaches for Huntington disease will be revealed as they progress into clinical trials.

Authors

Dinah W.Y. Sah, Neil Aronin

×

Figure 1

Multiple pathogenic mechanisms of mutant huntingtin include loss of BDNF neurotrophic support for striatal neurons, impaired axonal transport, altered vesicle recycling, mitochondrial dysfunction, increased autophagy, protein aggregation, and transcriptional dysregulation.

Options: View larger image (or click on image) Download as PowerPoint
Multiple pathogenic mechanisms of mutant huntingtin include loss of BDNF...
No single aberrant effect of mutant huntingtin explains neuronal dysfunction and early death. Mutant huntingtin disrupts the transcriptional activation of BDNF expression, thereby reducing BDNF delivery from cortex to striatum. Striatal neurons depend on BDNF to maintain their health (21, 22). Huntingtin has been known to associate with vesicles (34). Mutant huntingtin impairs endosomal recycling (39), thereby reducing uptake of transferrin receptor and EAAC1, probably among other recycled receptors (39, 40). Loss of cysteine (EAAC1 recycling defect) decreases glutathione and increases reactive oxygen species (40). Mutant huntingtin is associated with impaired axonal trafficking (37) and loss of BDNF delivery from the cortical to striatal neurons (36). Mitochondria defects (107) are well described, but it is unclear whether these are early events. A role in HD pathogenesis of protein aggregation in nuclear inclusions or cytoplasmic aggregates (48) is not established. Cell death can occur without generation of mutant huntingtin aggregation (108), and aggregates might be protective (109). Interference with HDAC efficiency has led to the idea that HDAC inhibition can counter a harmful effect of mutant huntingtin (110). Autophagy clears mutant huntingtin associated with organelles; an increase in autophagy might have therapeutic value (111). A recent review details these and other postulated molecular mechanisms in HD (15).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts