Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Loss of Gata5 in mice leads to bicuspid aortic valve
Brigitte Laforest, … , Gregor Andelfinger, Mona Nemer
Brigitte Laforest, … , Gregor Andelfinger, Mona Nemer
Published June 1, 2011
Citation Information: J Clin Invest. 2011;121(7):2876-2887. https://doi.org/10.1172/JCI44555.
View: Text | PDF
Research Article Cardiology

Loss of Gata5 in mice leads to bicuspid aortic valve

  • Text
  • PDF
Abstract

Bicuspid aortic valve (BAV), the leading congenital heart disease, occurs in 1%–2% of the population. Genetic studies suggest that BAV is an autosomal-dominant disease with reduced penetrance. However, only 1 gene, NOTCH1, has been linked to cases of BAV. Here, we show that targeted deletion of Gata5 in mice leads to hypoplastic hearts and partially penetrant BAV formation. Endocardial cell–specific inactivation of Gata5 led to BAV, similar to that observed in Gata5–/– mice. In all cases, the observed BAVs resulted from fusion of the right-coronary and noncoronary leaflets, the subtype associated with the more severe valve dysfunction in humans. Neither endocardial cell proliferation nor cushion formation was altered in the absence of Gata5. Rather, defective endocardial cell differentiation, resulting from the deregulation of several components of the Notch pathway and other important endocardial cell regulators, may be the underlying mechanism of disease. The results unravel a critical cell-autonomous role for endocardial Gata5 in aortic valve formation and identify GATA5 as a potential gene responsible for congenital heart disease in humans. Mice with mutated Gata5 alleles represent unique models to dissect the mechanisms underlying degenerative aortic valve disease and to develop much-needed preventive and therapeutic interventions.

Authors

Brigitte Laforest, Gregor Andelfinger, Mona Nemer

×

Full Text PDF | Download (5.53 MB)

Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts