Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Suppression of dual-specificity phosphatase–2 by hypoxia increases chemoresistance and malignancy in human cancer cells
Shih-Chieh Lin, … , Shao-Chieh Lin, Shaw-Jenq Tsai
Shih-Chieh Lin, … , Shao-Chieh Lin, Shaw-Jenq Tsai
Published April 1, 2011
Citation Information: J Clin Invest. 2011;121(5):1905-1916. https://doi.org/10.1172/JCI44362.
View: Text | PDF
Research Article Oncology

Suppression of dual-specificity phosphatase–2 by hypoxia increases chemoresistance and malignancy in human cancer cells

  • Text
  • PDF
Abstract

Hypoxia inducible factor–1 (HIF-1) is the master transcriptional regulator of the cellular response to altered oxygen levels. HIF-1α protein is elevated in most solid tumors and contributes to poor disease outcome by promoting tumor progression, metastasis, and resistance to chemotherapy. To date, the relationship between HIF-1 and these processes, particularly chemoresistance, has remained largely unexplored. Here, we show that expression of the MAPK-specific phosphatase dual-specificity phosphatase–2 (DUSP2) is markedly reduced or completely absent in many human cancers and that its level of expression inversely correlates with that of HIF-1α and with cancer malignancy. Analysis of human cancer cell lines indicated that HIF-1α inhibited DUSP2 transcription, which resulted in prolonged phosphorylation of ERK and, hence, increased chemoresistance. Knockdown of DUSP2 increased drug resistance under normoxia, while forced expression of DUSP2 abolished hypoxia-induced chemoresistance. Further, reexpression of DUSP2 during cancer progression caused tumor regression and markedly increased drug sensitivity in mice xenografted with human tumor cell lines. Furthermore, a variety of genes involved in drug response, angiogenesis, cell survival, and apoptosis were found to be downregulated by DUSP2. Our results demonstrate that DUSP2 is a key downstream regulator of HIF-1–mediated tumor progression and chemoresistance. DUSP2 therefore may represent a novel drug target of particular relevance in tumors resistant to conventional chemotherapy.

Authors

Shih-Chieh Lin, Chun-Wei Chien, Jenq-Chang Lee, Yi-Chun Yeh, Keng-Fu Hsu, Yen-Yu Lai, Shao-Chieh Lin, Shaw-Jenq Tsai

×

Figure 7

DUSP2 inversely controls genes involved in drug resistance.

Options: View larger image (or click on image) Download as PowerPoint
DUSP2 inversely controls genes involved in drug resistance.
(A) Promoter...
(A) Promoter activity (right panel) and mRNA levels (left panel) of EGR1 from HeLa cells cultured under normoxia or hypoxia for 24 hours. *P < 0.05 compared with normoxia group. (B) Levels of EGR1 mRNA from HeLa cells cultured under normoxia or hypoxia and treated with or without U0126 for 24 hours. The level of mRNA in normoxia groups was normalized as 1 and indicated as the dash line. *P < 0.05 compared with group without U0126. (C) Levels of EGR1 mRNA from HeLa cells carrying inducible DUSP2 cultured under normoxia or hypoxia and treated with or without doxycycline for 24 hours. *P < 0.05. (D) Levels of EGR1 mRNA from HeLa cells with (shDUSP2-1#8 and shDUSP2-1#12) or without (shLuciferase) DUSP2 knockdown cultured under normoxia for 24 hours. *P < 0.05 compared with control group. (E) Levels of mRNA encoding for osteopontin, MDR-1, CYR61, and GRP78 from HeLa cells with (shDUSP2-1#12) or without (shLuciferase) DUSP2 knockdown cultured under normoxia for 24 hours. *P < 0.05 compared with shLuciferase group. (F) Levels of mRNA encoding for osteopontin, MDR-1, CYR61, and GRP78 from HeLa cells carrying inducible DUSP2 cultured hypoxia and treated with or without doxycycline for 24 hours. *P < 0.05 compared with without-doxycycline group.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts