Gait disorders and postural instability, which are commonly observed in elderly patients with Parkinson disease (PD), respond poorly to dopaminergic agents used to treat other parkinsonian symptoms. The brain structures underlying gait disorders and falls in PD and aging remain to be characterized. Using functional MRI in healthy human subjects, we have shown here that activity of the mesencephalic locomotor region (MLR), which is composed of the pedunculopontine nucleus (PPN) and the adjacent cuneiform nucleus, was modulated by the speed of imagined gait, with faster imagined gait activating a discrete cluster within the MLR. Furthermore, the presence of gait disorders in patients with PD and in aged monkeys rendered parkinsonian by MPTP intoxication correlated with loss of PPN cholinergic neurons. Bilateral lesioning of the cholinergic part of the PPN induced gait and postural deficits in nondopaminergic lesioned monkeys. Our data therefore reveal that the cholinergic neurons of the PPN play a central role in controlling gait and posture and represent a possible target for pharmacological treatment of gait disorders in PD.
Carine Karachi, David Grabli, Frédéric A. Bernard, Dominique Tandé, Nicolas Wattiez, Hayat Belaid, Eric Bardinet, Annick Prigent, Hans-Peter Nothacker, Stéphane Hunot, Andreas Hartmann, Stéphane Lehéricy, Etienne C. Hirsch, Chantal François
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 1,051 | 110 |
92 | 41 | |
Figure | 254 | 25 |
Table | 83 | 0 |
Supplemental data | 50 | 1 |
Citation downloads | 74 | 0 |
Totals | 1,604 | 177 |
Total Views | 1,781 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.