Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Hypoglycemia and impaired hepatic glucose production in mice with a deletion of the C/EBPβ gene
Sha Liu, … , Richard W. Hanson, Jacob E. Friedman
Sha Liu, … , Richard W. Hanson, Jacob E. Friedman
Published January 15, 1999
Citation Information: J Clin Invest. 1999;103(2):207-213. https://doi.org/10.1172/JCI4243.
View: Text | PDF
Article

Hypoglycemia and impaired hepatic glucose production in mice with a deletion of the C/EBPβ gene

  • Text
  • PDF
Abstract

The transcription factor CCAAT/enhancer-binding protein β (C/EBPβ) is enriched in liver and adipose tissue and controls the expression of a wide variety of genes coding for important metabolic pathways, including gluconeogenesis and lipid synthesis. To investigate the role of C/EBPβ on glucose homeostasis, we studied mice with a targeted deletion of the gene for C/EBPβ–/– mice. Adult C/EBPβ–/– mice have hypoglycemia after an 18-hour fast, accompanied by lower hepatic glucose production (40% of that of wild-type mice), with no change in plasma insulin and a lower concentration of plasma free fatty acids (FFA). Glucagon infusion during a pancreatic clamp acutely stimulated hepatic glucose production by 38% in wild-type animals, with no change detected in C/EBPβ–/– mice. Unexpectedly, both the basal and glucagon-stimulated hepatic cyclic adenosine monophosphate (cAMP) levels were lower in C/EBPβ–/– mice, indicating an essential role for C/EBPβ in controlling proximal signal transduction. Fasting hypoglycemia was associated with normal levels of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) gene expression, however net liver glycogenolysis was impaired in C/EBPβ–/– mice. FFA release from isolated adipose tissue in response to epinephrine was 68% lower in C/EBPβ–/– mice than in control animals; however, N6,O2′-dibutyryladenosine (Bt2) cAMP stimulated a twofold increase in FFA release in C/EBPβ–/– compared with no further increase in wild-type mice. Because a deletion in the gene for C/EBPβ reduces blood glucose and circulating FFA, it could be an important therapeutic target for the treatment of non–insulin-dependent diabetes and possibly obesity, based on designing antagonists that decrease C/EBPβ activity.

Authors

Sha Liu, Colleen Croniger, Carmen Arizmendi, Mariko Harada-Shiba, Jianming Ren, Valeria Poli, Richard W. Hanson, Jacob E. Friedman

×

Full Text PDF | Download (311.62 KB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts