Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Increased catecholamine secretion contributes to hypertension in TRPM4-deficient mice
Ilka Mathar, … , Frank Schweda, Marc Freichel
Ilka Mathar, … , Frank Schweda, Marc Freichel
Published August 2, 2010
Citation Information: J Clin Invest. 2010;120(9):3267-3279. https://doi.org/10.1172/JCI41348.
View: Text | PDF
Research Article Cardiology

Increased catecholamine secretion contributes to hypertension in TRPM4-deficient mice

  • Text
  • PDF
Abstract

Hypertension is an underlying risk factor for cardiovascular disease. Despite this, its pathogenesis remains unknown in most cases. Recently, the transient receptor potential (TRP) channel family was associated with the development of several cardiovascular diseases linked to hypertension. The melastatin TRP channels TRPM4 and TRPM5 have distinct properties within the TRP channel family: they form nonselective cation channels activated by intracellular calcium ions. Here we report the identification of TRPM4 proteins in endothelial cells, heart, kidney, and chromaffin cells from the adrenal gland, suggesting that they have a role in the cardiovascular system. Consistent with this hypothesis, Trpm4 gene deletion in mice altered long-term regulation of blood pressure toward hypertensive levels. No changes in locomotor activity, renin-angiotensin system function, electrolyte and fluid balance, vascular contractility, and cardiac contractility under basal conditions were observed. By contrast, inhibition of ganglionic transmission with either hexamethonium or prazosin abolished the difference in blood pressure between Trpm4–/– and wild-type mice. Strikingly, plasma epinephrine concentration as well as urinary excretion of catecholamine metabolites were substantially elevated in Trpm4–/– mice. In freshly isolated chromaffin cells, lack of TRPM4 was shown to cause markedly more acetylcholine-induced exocytotic release events, while neither cytosolic calcium concentration, size, nor density of vesicles were different. We therefore conclude that TRPM4 proteins limit catecholamine release from chromaffin cells and that this contributes to increased sympathetic tone and hypertension.

Authors

Ilka Mathar, Rudi Vennekens, Marcel Meissner, Frieder Kees, Gerry Van der Mieren, Juan E. Camacho Londoño, Sebastian Uhl, Thomas Voets, Björn Hummel, An van den Bergh, Paul Herijgers, Bernd Nilius, Veit Flockerzi, Frank Schweda, Marc Freichel

×

Figure 2

Circadian rhythm of blood pressure, HR, and locomotor activity in TRPM4-deficient mice.

Options: View larger image (or click on image) Download as PowerPoint
Circadian rhythm of blood pressure, HR, and locomotor activity in TRPM4-...
Circadian rhythm of MAP (A), HR (B), and locomotor activity (C) of WT (black, n = 7–13) and Trpm4–/– mice (red, n = 8–15) averaged from day 9 to day 13 after implantation of the blood pressure transmitter. The time period between 6:00 p.m. and 6:00 a.m. is marked in gray. (D) Activity-dependent analysis of MAP, SBP, and DBP blood pressure from day 9 to day 13 after operation; *P < 0.01. Blood pressure values at a locomotor activity score above 9 (active) or below 9 (nonactive) were analyzed.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts