Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • Allergy (Apr 2019)
    • Biology of familial cancer predisposition syndromes (Feb 2019)
    • Mitochondrial dysfunction in disease (Aug 2018)
    • Lipid mediators of disease (Jul 2018)
    • Cellular senescence in human disease (Apr 2018)
    • View all review series...
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Scientific Show Stoppers
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication
Developmental differences in IFN signaling affect GATA1s-induced megakaryocyte hyperproliferation
Andrew J. Woo, … , Jonghwan Kim, Alan B. Cantor
Andrew J. Woo, … , Jonghwan Kim, Alan B. Cantor
Published August 1, 2013; First published July 1, 2013
Citation Information: J Clin Invest. 2013;123(8):3292-3304. https://doi.org/10.1172/JCI40609.
View: Text | PDF
Categories: Research Article Hematology

Developmental differences in IFN signaling affect GATA1s-induced megakaryocyte hyperproliferation

  • Text
  • PDF
Abstract

About 10% of Down syndrome (DS) infants are born with a transient myeloproliferative disorder (DS-TMD) that spontaneously resolves within the first few months of life. About 20%–30% of these infants subsequently develop acute megakaryoblastic leukemia (DS-AMKL). Somatic mutations leading to the exclusive production of a short GATA1 isoform (GATA1s) occur in all cases of DS-TMD and DS-AMKL. Mice engineered to exclusively produce GATA1s have marked megakaryocytic progenitor (MkP) hyperproliferation during early fetal liver (FL) hematopoiesis, but not during postnatal BM hematopoiesis, mirroring the spontaneous resolution of DS-TMD. The mechanisms that underlie these developmental stage–specific effects are incompletely understood. Here, we report a striking upregulation of type I IFN–responsive gene expression in prospectively isolated mouse BM- versus FL-derived MkPs. Exogenous IFN-α markedly reduced the hyperproliferation FL-derived MkPs of GATA1s mice in vitro. Conversely, deletion of the α/β IFN receptor 1 (Ifnar1) gene or injection of neutralizing IFN-α/β antibodies increased the proliferation of BM-derived MkPs of GATA1s mice beyond the initial postnatal period. We also found that these differences existed in human FL versus BM megakaryocytes and that primary DS-TMD cells expressed type I IFN–responsive genes. We propose that increased type I IFN signaling contributes to the developmental stage–specific effects of GATA1s and possibly the spontaneous resolution of DS-TMD.

Authors

Andrew J. Woo, Karen Wieland, Hui Huang, Thomas E. Akie, Taylor Piers, Jonghwan Kim, Alan B. Cantor

×

Figure 6

Expansion of BM Mks in GATA1s mice injected with neutralizing IFN-α/β antibodies.

Options: View larger image (or click on image) Download as PowerPoint
Expansion of BM Mks in GATA1s mice injected with neutralizing IFN-α/β an...
(A) Experimental scheme. 4- to 6-week-old GATA1s or age-matched WT mice were injected intraperitoneally with 1 × 104 neutralizing units of anti–IFN-α and anti–IFN-β antibodies each, or an equivalent amount of normal rabbit IgG. 8 days after injection, animals were euthanized, and BM was harvested. (B) Flow cytometric color-contour plots for CD41 staining and forward scatter from whole BM (after red blood cell lysis) from 1 representative experiment. (C) Change in CD41+ cell frequency in mice injected with neutralizing IFN-α/β antibodies versus control IgG (n = 3). Results of 3 independent experiments are shown. (D) Representative vWF immunohistochemical stained sections of femur BM from mice injected 8 days earlier with neutralizing anti–IFN-α/β antibodies or equivalent amounts of control IgG. Scale bar: 1 mm. (E) Quantitation of the data in D, showing the mean number of Mks per 2-mm2 field in 10 randomly selected sections.
Follow JCI:
Copyright © 2019 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts