Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Glutaredoxin 5 deficiency causes sideroblastic anemia by specifically impairing heme biosynthesis and depleting cytosolic iron in human erythroblasts
Hong Ye, Suh Young Jeong, Manik C. Ghosh, Gennadiy Kovtunovych, Laura Silvestri, Danilo Ortillo, Naoya Uchida, John Tisdale, Clara Camaschella, Tracey A. Rouault
Hong Ye, Suh Young Jeong, Manik C. Ghosh, Gennadiy Kovtunovych, Laura Silvestri, Danilo Ortillo, Naoya Uchida, John Tisdale, Clara Camaschella, Tracey A. Rouault
View: Text | PDF
Research Article Hematology

Glutaredoxin 5 deficiency causes sideroblastic anemia by specifically impairing heme biosynthesis and depleting cytosolic iron in human erythroblasts

  • Text
  • PDF
Abstract

Glutaredoxin 5 (GLRX5) deficiency has previously been identified as a cause of anemia in a zebrafish model and of sideroblastic anemia in a human patient. Here we report that GLRX5 is essential for iron-sulfur cluster biosynthesis and the maintenance of normal mitochondrial and cytosolic iron homeostasis in human cells. GLRX5, a mitochondrial protein that is highly expressed in erythroid cells, can homodimerize and assemble [2Fe-2S] in vitro. In GLRX5-deficient cells, [Fe-S] cluster biosynthesis was impaired, the iron-responsive element–binding (IRE-binding) activity of iron regulatory protein 1 (IRP1) was activated, and increased IRP2 levels, indicative of relative cytosolic iron depletion, were observed together with mitochondrial iron overload. Rescue of patient fibroblasts with the WT GLRX5 gene by transfection or viral transduction reversed a slow growth phenotype, reversed the mitochondrial iron overload, and increased aconitase activity. Decreased aminolevulinate δ, synthase 2 (ALAS2) levels attributable to IRP-mediated translational repression were observed in erythroid cells in which GLRX5 expression had been downregulated using siRNA along with marked reduction in ferrochelatase levels and increased ferroportin expression. Erythroblasts express both IRP-repressible ALAS2 and non-IRP–repressible ferroportin 1b. The unique combination of IRP targets likely accounts for the tissue-specific phenotype of human GLRX5 deficiency.

Authors

Hong Ye, Suh Young Jeong, Manik C. Ghosh, Gennadiy Kovtunovych, Laura Silvestri, Danilo Ortillo, Naoya Uchida, John Tisdale, Clara Camaschella, Tracey A. Rouault

×

Figure 2

Knockdown of GLRX5 by siRNA.

Options: View larger image (or click on image) Download as PowerPoint
Knockdown of GLRX5 by siRNA.
(A) GLRX5 in HeLa S3 cells was knocked down...
(A) GLRX5 in HeLa S3 cells was knocked down using 4 siRNA oligos (1 to 4). WT, mock, and neg. are negative controls (mock: same treatment as RNAi but without any oligo). The in-gel aconitase assay shows mitochondrial aconitase (m-acon) activity (top band) and cytosolic aconitase (c-acon) activity. Western blots of m-acon, c-acon, and α-tubulin are shown. (B) Quantitation of band intensity of aconitase activity in part A. P = 0.015 for RNAi m-acon. *P < 0.05; **P < 0.01. m-aconitase activity (percentage of control). (C) XO activity assay. Results are expressed as a fraction of WT (same for the following quantitation). For treatments by oligo1-4, P = 0.01, 0.07, 0.007, and 0.027, respectively. XO activity (percentage of WT control). (D) Cellular nonheme iron quantitation. For treatments by ologo 1-4, P = 0.005, 0.2, 0.01, and 0.04, respectively. Cellular iron (percentage of WT control). (E) Nonheme iron quantitation with subcellular fractionation. Control, control cells (WT, mock, and neg.); RNAi, siRNA-treated cells (by oligo1-4); mito, mitochondria fraction; cyto, cytosol fraction. For sample of RNAi-mito, P = 0.03. Mitochondrial iron (percentage of control). (F) Western blot for IRP2 and H-ferritin (H-fer). The α-tubulin is loading control. (G) Quantitation of band intensity of Western blot in panel F. P = 0.0003 and 0.021, respectively. WB quantitation (percentage of control H-ferritin).

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts