Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Glutaredoxin 5 deficiency causes sideroblastic anemia by specifically impairing heme biosynthesis and depleting cytosolic iron in human erythroblasts
Hong Ye, … , Clara Camaschella, Tracey A. Rouault
Hong Ye, … , Clara Camaschella, Tracey A. Rouault
Published April 1, 2010
Citation Information: J Clin Invest. 2010;120(5):1749-1761. https://doi.org/10.1172/JCI40372.
View: Text | PDF
Research Article Hematology

Glutaredoxin 5 deficiency causes sideroblastic anemia by specifically impairing heme biosynthesis and depleting cytosolic iron in human erythroblasts

  • Text
  • PDF
Abstract

Glutaredoxin 5 (GLRX5) deficiency has previously been identified as a cause of anemia in a zebrafish model and of sideroblastic anemia in a human patient. Here we report that GLRX5 is essential for iron-sulfur cluster biosynthesis and the maintenance of normal mitochondrial and cytosolic iron homeostasis in human cells. GLRX5, a mitochondrial protein that is highly expressed in erythroid cells, can homodimerize and assemble [2Fe-2S] in vitro. In GLRX5-deficient cells, [Fe-S] cluster biosynthesis was impaired, the iron-responsive element–binding (IRE-binding) activity of iron regulatory protein 1 (IRP1) was activated, and increased IRP2 levels, indicative of relative cytosolic iron depletion, were observed together with mitochondrial iron overload. Rescue of patient fibroblasts with the WT GLRX5 gene by transfection or viral transduction reversed a slow growth phenotype, reversed the mitochondrial iron overload, and increased aconitase activity. Decreased aminolevulinate δ, synthase 2 (ALAS2) levels attributable to IRP-mediated translational repression were observed in erythroid cells in which GLRX5 expression had been downregulated using siRNA along with marked reduction in ferrochelatase levels and increased ferroportin expression. Erythroblasts express both IRP-repressible ALAS2 and non-IRP–repressible ferroportin 1b. The unique combination of IRP targets likely accounts for the tissue-specific phenotype of human GLRX5 deficiency.

Authors

Hong Ye, Suh Young Jeong, Manik C. Ghosh, Gennadiy Kovtunovych, Laura Silvestri, Danilo Ortillo, Naoya Uchida, John Tisdale, Clara Camaschella, Tracey A. Rouault

×

Figure 1

Human GLRX5 localizes to the mitochondrial matrix in HeLa cells.

Options: View larger image (or click on image) Download as PowerPoint
Human GLRX5 localizes to the mitochondrial matrix in HeLa cells.
(A) Imm...
(A) Immunofluorescence staining of endogenous GLRX5 (green) and Tom20 (red) in HeLa cells. Tom20 protein is used as the mitochondrial marker. Merge of the 2 stainings indicates colocalization of GLRX5 and mitochondrial signals. Scale bar: 10 μm. (B) Western blots of subcellular fractionation of HeLa cells. Mito, mitochondria; cyto, cytosol. Mitochondrial aconitase (m-acon), SOD2, and Tom20 are used as mitochondrial markers. IRP1 (also the cytosolic aconitase) and α-tubulin are used as cytosolic markers.

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts