Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Tregs control the development of symptomatic West Nile virus infection in humans and mice
Marion C. Lanteri, Katie M. O’Brien, Whitney E. Purtha, Mark J. Cameron, Jennifer M. Lund, Rachel E. Owen, John W. Heitman, Brian Custer, Dale F. Hirschkorn, Leslie H. Tobler, Nancy Kiely, Harry E. Prince, Lishomwa C. Ndhlovu, Douglas F. Nixon, Hany T. Kamel, David J. Kelvin, Michael P. Busch, Alexander Y. Rudensky, Michael S. Diamond, Philip J. Norris
Marion C. Lanteri, Katie M. O’Brien, Whitney E. Purtha, Mark J. Cameron, Jennifer M. Lund, Rachel E. Owen, John W. Heitman, Brian Custer, Dale F. Hirschkorn, Leslie H. Tobler, Nancy Kiely, Harry E. Prince, Lishomwa C. Ndhlovu, Douglas F. Nixon, Hany T. Kamel, David J. Kelvin, Michael P. Busch, Alexander Y. Rudensky, Michael S. Diamond, Philip J. Norris
View: Text | PDF
Research Article Infectious disease

Tregs control the development of symptomatic West Nile virus infection in humans and mice

  • Text
  • PDF
Abstract

West Nile virus (WNV) causes asymptomatic infection in most humans, but for undefined reasons, approximately 20% of immunocompetent individuals develop West Nile fever, a potentially debilitating febrile illness, and approximately 1% develop neuroinvasive disease syndromes. Notably, since its emergence in 1999, WNV has become the leading cause of epidemic viral encephalitis in North America. We hypothesized that CD4+ Tregs might be differentially regulated in subjects with symptomatic compared with those with asymptomatic WNV infection. Here, we show that in 32 blood donors with acute WNV infection, Tregs expanded significantly in the 3 months after index (RNA+) donations in all subjects. Symptomatic donors exhibited lower Treg frequencies from 2 weeks through 1 year after index donation yet did not show differences in systemic T cell or generalized inflammatory responses. In parallel prospective experimental studies, symptomatic WNV-infected mice also developed lower Treg frequencies compared with asymptomatic mice at 2 weeks after infection. Moreover, Treg-deficient mice developed lethal WNV infection at a higher rate than controls. Together, these results suggest that higher levels of peripheral Tregs after infection protect against severe WNV disease in immunocompetent animals and humans.

Authors

Marion C. Lanteri, Katie M. O’Brien, Whitney E. Purtha, Mark J. Cameron, Jennifer M. Lund, Rachel E. Owen, John W. Heitman, Brian Custer, Dale F. Hirschkorn, Leslie H. Tobler, Nancy Kiely, Harry E. Prince, Lishomwa C. Ndhlovu, Douglas F. Nixon, Hany T. Kamel, David J. Kelvin, Michael P. Busch, Alexander Y. Rudensky, Michael S. Diamond, Philip J. Norris

×

Figure 6

Lower frequency of Tregs in symptomatic WNV-infected mice.

Options: View larger image (or click on image) Download as PowerPoint
Lower frequency of Tregs in symptomatic WNV-infected mice.
(A) Percentag...
(A) Percentage change in body weight for 8 hunched mice versus 12 nonhunched mice 8 days after infection; horizontal bars represent mean. (B) Correlation between the percentage change in body weight and the amount of WNV in the brain from 20 mice at day 8 after infection. Correlation coefficient = 0.65. Plaque assay results for viral burden in spinal cord (C) or brain (D) tissues collected from 12 asymptomatic and 8 symptomatic mice from a group of 20 mice sacrificed at day 8 after infection; horizontal bars represent mean. (E) Percentage survival for 40 mice over 28 days after infection. (F) Treg-gating strategy in mouse experiments. PBMCs were stained ex vivo for surface TCRβ, CD4, CD25, and intracellular CD152 and Foxp3. Lymphocytes were gated and dead cells excluded if positive for the Aqua-amine dye. CD152+Foxp3+ Tregs were enumerated among CD4+TCRβ+ cells. (G) Treg frequencies in mice that survived to day 28 after infection (n = 17) and died prior to day 28 after infection (n = 18) are shown before infection and at 14 days after infection. Error bars represent SEM. (H) Association between high Treg frequencies and low WNV-specific CD8+ T cells in WT mice (n = 15) at 8 days after infection with 1 PFU of WNV. Horizontal bars represent means. Samples were classified as “high” WNV-specific CD8+ T cells if the value was higher than the mean value for all the samples (3.1% of splenic T cells at day 8) and “low” if the value was lower than the mean. **P < 0.01.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts