Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
The polycomb group protein Bmi-1 represses the tumor suppressor PTEN and induces epithelial-mesenchymal transition in human nasopharyngeal epithelial cells
Li-Bing Song, Jun Li, Wen-Ting Liao, Yan Feng, Chun-Ping Yu, Li-Juan Hu, Qing-Li Kong, Li-Hua Xu, Xing Zhang, Wan-Li Liu, Man-Zhi Li, Ling Zhang, Tie-Bang Kang, Li-Wu Fu, Wen-Lin Huang, Yun-Fei Xia, Sai Wah Tsao, Mengfeng Li, Vimla Band, Hamid Band, Qing-Hua Shi, Yi-Xin Zeng, Mu-Sheng Zeng
Li-Bing Song, Jun Li, Wen-Ting Liao, Yan Feng, Chun-Ping Yu, Li-Juan Hu, Qing-Li Kong, Li-Hua Xu, Xing Zhang, Wan-Li Liu, Man-Zhi Li, Ling Zhang, Tie-Bang Kang, Li-Wu Fu, Wen-Lin Huang, Yun-Fei Xia, Sai Wah Tsao, Mengfeng Li, Vimla Band, Hamid Band, Qing-Hua Shi, Yi-Xin Zeng, Mu-Sheng Zeng
View: Text | PDF | Corrigendum
Research Article Oncology

The polycomb group protein Bmi-1 represses the tumor suppressor PTEN and induces epithelial-mesenchymal transition in human nasopharyngeal epithelial cells

  • Text
  • PDF
Abstract

The polycomb group protein B lymphoma Mo-MLV insertion region 1 homolog (Bmi-1) is dysregulated in various cancers, and its upregulation strongly correlates with an invasive phenotype and poor prognosis in patients with nasopharyngeal carcinomas. However, the underlying mechanism of Bmi-1–mediated invasiveness remains unknown. In the current study, we found that upregulation of Bmi-1 induced epithelial-mesenchymal transition (EMT) and enhanced the motility and invasiveness of human nasopharyngeal epithelial cells, whereas silencing endogenous Bmi-1 expression reversed EMT and reduced motility. Furthermore, upregulation of Bmi-1 led to the stabilization of Snail, a transcriptional repressor associated with EMT, via modulation of PI3K/Akt/GSK-3β signaling. Chromatin immunoprecipitation assays revealed that Bmi-1 transcriptionally downregulated expression of the tumor suppressor PTEN in tumor cells through direct association with the PTEN locus. This in vitro analysis was consistent with the statistical inverse correlation detected between Bmi-1 and PTEN expression in a cohort of human nasopharyngeal carcinoma biopsies. Moreover, ablation of PTEN expression partially rescued the migratory/invasive phenotype of Bmi-1–silenced cells, indicating that PTEN might be a major mediator of Bmi-1–induced EMT. Our results provide functional and mechanistic links between the oncoprotein Bmi-1 and the tumor suppressor PTEN in the development and progression of cancer.

Authors

Li-Bing Song, Jun Li, Wen-Ting Liao, Yan Feng, Chun-Ping Yu, Li-Juan Hu, Qing-Li Kong, Li-Hua Xu, Xing Zhang, Wan-Li Liu, Man-Zhi Li, Ling Zhang, Tie-Bang Kang, Li-Wu Fu, Wen-Lin Huang, Yun-Fei Xia, Sai Wah Tsao, Mengfeng Li, Vimla Band, Hamid Band, Qing-Hua Shi, Yi-Xin Zeng, Mu-Sheng Zeng

×

Figure 1

Overexpression of the Bmi-1 gene induces EMT in NPEC cells.

Options: View larger image (or click on image) Download as PowerPoint
Overexpression of the Bmi-1 gene induces EMT in NPEC cells.
(A) Morpholo...
(A) Morphology of NPEC1 and NPEC2 expressing either the control vector pMSCV or pMSCV/Bmi-1 are shown by phase contrast. Original magnification, ×400. (B) Expression of the epithelial proteins E-cadherin and α-catenin and the mesenchymal proteins fibronectin and vimentin in NPEC1 and NPEC2 cells expressing control vector pMSCV or pMSCV/Bmi-1 were detected by Western blot. α-Tubulin was used as a loading control. (C) NPEC1 and NPEC2 cells expressing control vector pMSCV or pMSCV/Bmi-1 were replated on 10% fetal bovine serum/RPMI-1640–precoated coverslips. After an additional 24 hours, cells were stained for E-cadherin, α-catenin, fibronectin, vimentin, and DAPI and analyzed by confocal microscopy. The green signal represents staining for the corresponding protein, while the red signal signifies nuclear DNA staining with rhodamine. Scale bar: 80 μm. (D) The invasive properties of the cells were analyzed in by an invasion assay using a Matrigel-coated Boyden chamber. Migrated cells were plotted as the average number of cells per field of view from 3 different experiments, as described in Methods. Original magnification, ×400. Error bars represent SEM. **P < 0.01.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts