Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Potent inhibition of HIV-1 by TRIM5-cyclophilin fusion proteins engineered from human components
Martha R. Neagu, … , Markus G. Manz, Jeremy Luban
Martha R. Neagu, … , Markus G. Manz, Jeremy Luban
Published September 8, 2009
Citation Information: J Clin Invest. 2009;119(10):3035-3047. https://doi.org/10.1172/JCI39354.
View: Text | PDF
Research Article AIDS/HIV

Potent inhibition of HIV-1 by TRIM5-cyclophilin fusion proteins engineered from human components

  • Text
  • PDF
Abstract

New World monkeys of the genus Aotus synthesize a fusion protein (AoT5Cyp) containing tripartite motif-containing 5 (TRIM5) and cyclophilin A (CypA) that potently blocks HIV-1 infection. We attempted to generate a human HIV-1 inhibitor modeled after AoT5Cyp, by fusing human CypA to human TRIM5 (hT5Cyp). Of 13 constructs, 3 showed substantial HIV-1–inhibitory activity when expressed in human cell lines. This activity required capsid binding by CypA and correlated with CypA linkage to the TRIM5a capsid-specificity determinant and the ability to form cytoplasmic bodies. CXCR4- and CCR5-tropic HIV-1 clones and primary isolates were inhibited from infecting multiple human macrophage and T cell lines and primary cells by hT5Cyp, as were HIV-2ROD, SIVAGMtan, FIVPET, and a circulating HIV-1 isolate previously reported to be AoT5Cyp resistant. The anti–HIV-1 activity of hT5Cyp was surprisingly more effective than that of the well-characterized rhesus TRIM5α, especially in T cells. hT5Cyp also blocked HIV-1 infection of primary CD4+ T cells and macrophages and conferred a survival advantage to these cells without disrupting their function. Extensive attempts to elicit HIV-1 resistance to hT5Cyp were unsuccessful. Finally, Rag2–/–γc–/– mice were engrafted with human CD4+ T cells that had been transduced by optimized lentiviral vectors bearing hT5Cyp. Upon challenge with HIV-1, these mice showed decreased viremia and productive infection in lymphoid organs and preserved numbers of human CD4+ T cells. We conclude that hT5Cyp is an extraordinarily robust inhibitor of HIV-1 replication and a promising anti–HIV-1 gene therapy candidate.

Authors

Martha R. Neagu, Patrick Ziegler, Thomas Pertel, Caterina Strambio-De-Castillia, Christian Grütter, Gladys Martinetti, Luca Mazzucchelli, Markus Grütter, Markus G. Manz, Jeremy Luban

×

Figure 8

hT5Cyp inhibits HIV-1 in a humanized mouse model.

Options: View larger image (or click on image) Download as PowerPoint
hT5Cyp inhibits HIV-1 in a humanized mouse model.
Rag2–/–γc–/– mice (6–1...
Rag2–/–γc–/– mice (6–10 weeks old) were engrafted with GFP-sorted scALPS-transduced CD4+ T cells expressing either hT5Cyp or hT5CypH126Q. (A) Five days after engraftment, mice were challenged with HIV-1NL4-3. The percentage of hCD4+ T cells among all nucleated cells in the peripheral blood of individual mice is shown at 2 weeks following infection. The fold difference for the mean is indicated (horizontal bars, ***P = 0.0002, Mann-Whitney U test). (B–E) Two weeks after engraftment, mice were infected with HIV-1NL4-3. (B) Plasma viral load for individual mice was determined 3 weeks after infection. The fold difference in the mean is indicated (horizontal bars; **P = 0.005, Mann-Whitney U test). (C and D) Three weeks after infection, single-cell suspensions from thymus were analyzed by flow cytometry for p24 and hCD3 cells (C) or hCD45 and hCD4 (D). The numbers indicate the percentage of cells within the gates. (E) Paraffin-embedded sections of thymus are shown, stained with H&E, anti-hCD3, or anti-p24, as indicated. All panels are at ×40 magnification, except the 2 right panels, which are ×80 magnification. In C–E, representative results from 3 sets of experiments are shown.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts