Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Potent inhibition of HIV-1 by TRIM5-cyclophilin fusion proteins engineered from human components
Martha R. Neagu, … , Markus G. Manz, Jeremy Luban
Martha R. Neagu, … , Markus G. Manz, Jeremy Luban
Published September 8, 2009
Citation Information: J Clin Invest. 2009;119(10):3035-3047. https://doi.org/10.1172/JCI39354.
View: Text | PDF
Research Article AIDS/HIV

Potent inhibition of HIV-1 by TRIM5-cyclophilin fusion proteins engineered from human components

  • Text
  • PDF
Abstract

New World monkeys of the genus Aotus synthesize a fusion protein (AoT5Cyp) containing tripartite motif-containing 5 (TRIM5) and cyclophilin A (CypA) that potently blocks HIV-1 infection. We attempted to generate a human HIV-1 inhibitor modeled after AoT5Cyp, by fusing human CypA to human TRIM5 (hT5Cyp). Of 13 constructs, 3 showed substantial HIV-1–inhibitory activity when expressed in human cell lines. This activity required capsid binding by CypA and correlated with CypA linkage to the TRIM5a capsid-specificity determinant and the ability to form cytoplasmic bodies. CXCR4- and CCR5-tropic HIV-1 clones and primary isolates were inhibited from infecting multiple human macrophage and T cell lines and primary cells by hT5Cyp, as were HIV-2ROD, SIVAGMtan, FIVPET, and a circulating HIV-1 isolate previously reported to be AoT5Cyp resistant. The anti–HIV-1 activity of hT5Cyp was surprisingly more effective than that of the well-characterized rhesus TRIM5α, especially in T cells. hT5Cyp also blocked HIV-1 infection of primary CD4+ T cells and macrophages and conferred a survival advantage to these cells without disrupting their function. Extensive attempts to elicit HIV-1 resistance to hT5Cyp were unsuccessful. Finally, Rag2–/–γc–/– mice were engrafted with human CD4+ T cells that had been transduced by optimized lentiviral vectors bearing hT5Cyp. Upon challenge with HIV-1, these mice showed decreased viremia and productive infection in lymphoid organs and preserved numbers of human CD4+ T cells. We conclude that hT5Cyp is an extraordinarily robust inhibitor of HIV-1 replication and a promising anti–HIV-1 gene therapy candidate.

Authors

Martha R. Neagu, Patrick Ziegler, Thomas Pertel, Caterina Strambio-De-Castillia, Christian Grütter, Gladys Martinetti, Luca Mazzucchelli, Markus Grütter, Markus G. Manz, Jeremy Luban

×

Figure 6

New lentiviral vectors bearing hT5Cyp potently block replication-competent HIV-1 in primary cells.

Options: View larger image (or click on image) Download as PowerPoint
New lentiviral vectors bearing hT5Cyp potently block replication-compete...
(A) Design of conventional bicistronic (AIG) and new dual-promoter (scALPS) lentiviral vectors. (B) Forty-eight hours after transduction with AIG and scALPS vectors, Jurkat T cells and primary hCD4+ T cells were analyzed by flow cytometry for GFP. (C and D) Primary human CD4+ T cells transduced with scALPS encoding the indicated hT5Cyp proteins were sorted for GFP and infected with lab clone HIV-1NL4-3 (C) or primary isolate HIV-1DH12 (D), and RT activity in the supernatant was measured. Triplicate spreading infection for 1 representative donor of 4 is shown. (E and F) Human macrophages generated from GM-CSF–treated, CD14+ monocytes were transduced with the indicated vectors, sorted for GFP, and challenged with modified HIV-1NL4-3 bearing a CCR5-tropic Env (E) or primary isolate HIV-1132W (F). Infection was monitored as described in C and D. Error bars in C and E represent SEM. n = 3. (G) hT5Cyp-bearing CD4+ T cells exhibit a selective advantage after challenge with HIV-1. CD4+ T cells were transduced with scALPS encoding the indicated T5Cyp proteins. Cultures containing 23% GFP+ cells were challenged with HIV-1NL4-3 (15 ng p24/106 cells), and the percentage of GFP+ cells was monitored (left y axis, open symbols). Supernatant RT activity was measured (right y axis, filled symbols). Cultures were restimulated using allogeneic PBMCs, IL-2, and PHA 26 days following infection (arrow).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts