Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Dendritic cells in intestinal homeostasis and disease
Maria Rescigno, Antonio Di Sabatino
Maria Rescigno, Antonio Di Sabatino
Published September 1, 2009
Citation Information: J Clin Invest. 2009;119(9):2441-2450. https://doi.org/10.1172/JCI39134.
View: Text | PDF
Science in Medicine

Dendritic cells in intestinal homeostasis and disease

  • Text
  • PDF
Abstract

DCs are specialized APCs that orchestrate innate and adaptive immune responses. The intestinal mucosa contains numerous DCs, which induce either protective immunity to infectious agents or tolerance to innocuous antigens, including food and commensal bacteria. Several subsets of mucosal DCs have been described that display unique functions, dictated in part by the local microenvironment. In this review, we summarize the distinct subtypes of DCs and their distribution in the gut; examine how DC dysfunction contributes to intestinal disease development, including inflammatory bowel disease and celiac disease; and discuss manipulation of DCs for therapy.

Authors

Maria Rescigno, Antonio Di Sabatino

×

Figure 2

Three non–mutually exclusive possible mechanisms of DC involvement in IBD that lead to an imbalance between Th17/Th1 and Treg cells have been reported.

Options: View larger image (or click on image) Download as PowerPoint
Three non–mutually exclusive possible mechanisms of DC involvement in IB...
(A) Involvement of ATP-releasing or flagellated bacteria. An unexpected increase in the number of bacteria releasing ATP or expressing flagellin can lead to the activation of CX3CR1+CD70+ DCs that favor Th17 cell differentiation (i). (B) Involvement of the local microenvironment. A defect in the release of immunomodulatory factors (e.g., TSLP, TGF-β, and RA) by IECs may lead to a reduction in Treg numbers caused by the failure of conditioning tolerogenic CD103+ DCs (ii). Local inflammation may lead to the recruitment of inflammatory DCs; by releasing IL-12 and TNF-α, these inflammatory DCs drive the differentiation of IFN-γ and TNF-α Th1 cells (iii). (C) Involvement of immune cells. Inflammation may also affect the differentiation of tolerogenic macrophages from recruited monocytes, leading to reduction in Treg differentiation and inability to control the activity of CX3CR1+CD70+ DCs (iv). Th17 or Th1 cells are strongly restimulated in situ by CD70+ or OX40L+ APCs (v). Both DC types have not been described in humans, but the retention of activated DCs has been shown. The mechanisms in A–C may participate in disease induction by generating an imbalance between Tregs and Th1 or Th17 cells (vi). Th1/Th17 cells release IFN-γ, TNF-α, or IL-17, which contribute to tissue destruction through the release of MMPs by activated fibroblasts and the recruitment of neutrophils. Th1 or inflammatory, DC-derived TNF-α may also increase the endothelial expression of MAdCAM-1, thus favoring the recruitment of α4β7+ Th1 cells.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts