Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Coadaptation of Helicobacter pylori and humans: ancient history, modern implications
John C. Atherton, Martin J. Blaser
John C. Atherton, Martin J. Blaser
Published September 1, 2009
Citation Information: J Clin Invest. 2009;119(9):2475-2487. https://doi.org/10.1172/JCI38605.
View: Text | PDF
Review Series

Coadaptation of Helicobacter pylori and humans: ancient history, modern implications

  • Text
  • PDF
Abstract

Humans have been colonized by Helicobacter pylori for at least 50,000 years and probably throughout their evolution. H. pylori has adapted to humans, colonizing children and persisting throughout life. Most strains possess factors that subtly modulate the host environment, increasing the risk of peptic ulceration, gastric adenocarcinoma, and possibly other diseases. H. pylori genes encoding these and other factors rapidly evolve through mutation and recombination, changing the bacteria-host interaction. Although immune and physiologic responses to H. pylori also contribute to pathogenesis, humans have evolved in concert with the bacterium, and its recent absence throughout the life of many individuals has led to new human physiological changes. These may have contributed to recent increases in esophageal adenocarcinoma and, more speculatively, other modern diseases.

Authors

John C. Atherton, Martin J. Blaser

×

Figure 5

Th subsets in H. pylori–associated health and disease.

Options: View larger image (or click on image) Download as PowerPoint
Th subsets in H. pylori–associated health and disease.
   
H. pylori col...
H. pylori colonization is associated with strong Th1 and Treg responses. We speculate that historically the Treg response has been sufficient to downregulate the local gastric Th1 response thereby avoiding excessive gastric inflammation and gastroduodenal disease. Tregs are also induced by other microbes and through bystander effects may downregulate the H. pylori–associated Th1 response and disease. A low level of gastric Tregs is associated with an increased risk of peptic ulceration. We speculate that pre-19th–century humans had healthy levels of Tregs and thus that H. pylori–associated diseases (particularly peptic ulceration) were unusual. Either of two hypotheses could causally explain the rise in atopic and allergic disease with the disappearance of H. pylori. In the first hypothesis, loss of other infections common in childhood has led to reduced Tregs and thus to loss of Th2 suppression and increased Th2 diseases. Over the same time frame, the loss of Th1 suppression has led to the rise in H. pylori–associated diseases. In modern life, H. pylori is a marker for other childhood infections and a strong Treg response, explaining the negative association between H. pylori and diseases such as asthma. In the second hypothesis, loss of H. pylori itself has led to reduced Treg populations and a subsequent increase in Th2 responses; this could only be the case if H. pylori–associated Tregs had a systemic effect, which now has been observed. These hypotheses are not mutually exclusive.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts