Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Generation of mature human myelomonocytic cells through expansion and differentiation of pluripotent stem cell–derived lin–CD34+CD43+CD45+ progenitors
Kyung-Dal Choi, … , Maxim A. Vodyanik, Igor I. Slukvin
Kyung-Dal Choi, … , Maxim A. Vodyanik, Igor I. Slukvin
Published August 10, 2009
Citation Information: J Clin Invest. 2009;119(9):2818-2829. https://doi.org/10.1172/JCI38591.
View: Text | PDF
Technical Advance Hematology

Generation of mature human myelomonocytic cells through expansion and differentiation of pluripotent stem cell–derived lin–CD34+CD43+CD45+ progenitors

  • Text
  • PDF
Abstract

Basic research into human mature myelomonocytic cell function, myeloid lineage diversification and leukemic transformation, and assessment of myelotoxicity in preclinical drug development requires a constant supply of donor blood or bone marrow samples and laborious purification of mature myeloid cells or progenitors, which are present in very small quantities. To overcome these limitations, we have developed a protocol for efficient generation of neutrophils, eosinophils, macrophages, osteoclasts, DCs, and Langerhans cells from human embryonic stem cells (hESCs). As a first step, we generated lin–CD34+CD43+CD45+ hematopoietic cells highly enriched in myeloid progenitors through coculture of hESCs with OP9 feeder cells. After expansion in the presence of GM-CSF, these cells were directly differentiated with specific cytokine combinations toward mature cells of particular types. Morphologic, phenotypic, molecular, and functional analyses revealed that hESC-derived myelomonocytic cells were comparable to their corresponding somatic counterparts. In addition, we demonstrated that a similar protocol could be used to generate myelomonocytic cells from induced pluripotent stem cells (iPSCs). This technology offers an opportunity to generate large numbers of patient-specific myelomonocytic cells for in vitro studies of human disease mechanisms as well as for drug screening.

Authors

Kyung-Dal Choi, Maxim A. Vodyanik, Igor I. Slukvin

×

Figure 4

Phenotypic, molecular, and functional analysis of H1 hESC-derived eosinophils and neutrophils obtained from isolated CD235a/CD41a–CD45+ cells after 2 days expansion with GM-CSF.

Options: View larger image (or click on image) Download as PowerPoint
Phenotypic, molecular, and functional analysis of H1 hESC-derived eosino...
FACS analysis of phenotype of hESC-derived neutrophils (A) and eosinophils (B). Plots show isotype control (gray) and specific antibody (black) histograms; asterisks indicate intracellular staining. Values within dot plots indicate the percentage of cells within the corresponding gate. A representative of 10 independent experiments is shown. Analysis of neutrophil and eosinophil-specific gene expression in hESC-derived neutrophils (C) and eosinophils (D) by RT-PCR. M, molecular weight markers; hES, undifferentiated hESCs; 45+, hESC-derived CD235a/CD41a–CD45+ cells isolated after 2 days expansion with GM-CSF; Neu, neutrophils; Eo is eosinophils. (E) Phagocytosis of zymozan and E.coli particles by hESC-derived neutrophils. Plots show histograms for isotype control (open gray) and cells incubated at 4°C (filled gray; nonspecific binding control) and 37°C (open black). (F) Superoxide production by hESC-derived (H1-Neu), somatic CD34+ cell–derived (34-Neu), and peripheral blood (PB-Neu) neutrophils in response to PMA. Results are mean ± SEM of 3 independent experiments performed in triplicate; **P < 0.01. (G) Superoxide production by hESC-derived (H1-EO) and somatic CD34+ cell–derived (34-EO) eosinophils in response to PMA. Results are mean ± SEM of 3 independent experiments performed in triplicate. (H) Chemotactic activity of hESC-derived, somatic CD34+ cell–derived, and peripheral blood neutrophils. Results are mean ± SEM of 3 independent experiments performed in triplicate; *P < 0.05. (I) Chemotactic activity of hESC-derived and somatic CD34+ cell–derived eosinophils. Results are mean ± SEM of 3 independent experiments performed in triplicate; **P < 0.01.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts