Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Aberrantly glycosylated IgA1 in IgA nephropathy patients is recognized by IgG antibodies with restricted heterogeneity
Hitoshi Suzuki, Run Fan, Zhixin Zhang, Rhubell Brown, Stacy Hall, Bruce A. Julian, W. Winn Chatham, Yusuke Suzuki, Robert J. Wyatt, Zina Moldoveanu, Jeannette Y. Lee, James Robinson, Milan Tomana, Yasuhiko Tomino, Jiri Mestecky, Jan Novak
Hitoshi Suzuki, Run Fan, Zhixin Zhang, Rhubell Brown, Stacy Hall, Bruce A. Julian, W. Winn Chatham, Yusuke Suzuki, Robert J. Wyatt, Zina Moldoveanu, Jeannette Y. Lee, James Robinson, Milan Tomana, Yasuhiko Tomino, Jiri Mestecky, Jan Novak
View: Text | PDF
Research Article

Aberrantly glycosylated IgA1 in IgA nephropathy patients is recognized by IgG antibodies with restricted heterogeneity

  • Text
  • PDF
Abstract

IgA nephropathy (IgAN) is characterized by circulating immune complexes composed of galactose-deficient IgA1 and a glycan-specific IgG antibody. These immune complexes deposit in the glomerular mesangium and induce the mesangioproliferative glomerulonephritis characteristic of IgAN. To define the precise specificities and molecular properties of the IgG antibodies, we generated EBV-immortalized IgG-secreting lymphocytes from patients with IgAN and found that the secreted IgG formed complexes with galactose-deficient IgA1 in a glycan-dependent manner. We cloned and sequenced the heavy- and light-chain antigen-binding domains of IgG specific for galactose-deficient IgA1 and identified an A to S substitution in the complementarity-determining region 3 of the variable region of the gene encoding the IgG heavy chain in IgAN patients. Furthermore, site-directed mutagenesis that reverted the residue to alanine reduced the binding of recombinant IgG to galactose-deficient IgA1. Finally, we developed a dot-blot assay for the glycan-specific IgG antibody that differentiated patients with IgAN from healthy and disease controls with 88% specificity and 95% sensitivity and found that elevated levels of this antibody in the sera of patients with IgAN correlated with proteinuria. Collectively, these findings indicate that glycan-specific antibodies are associated with the development of IgAN and may represent a disease-specific marker and potential therapeutic target.

Authors

Hitoshi Suzuki, Run Fan, Zhixin Zhang, Rhubell Brown, Stacy Hall, Bruce A. Julian, W. Winn Chatham, Yusuke Suzuki, Robert J. Wyatt, Zina Moldoveanu, Jeannette Y. Lee, James Robinson, Milan Tomana, Yasuhiko Tomino, Jiri Mestecky, Jan Novak

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 1,563 482
PDF 165 145
Figure 356 6
Table 160 0
Supplemental data 81 21
Citation downloads 102 0
Totals 2,427 654
Total Views 3,081
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts