Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Aberrantly glycosylated IgA1 in IgA nephropathy patients is recognized by IgG antibodies with restricted heterogeneity
Hitoshi Suzuki, … , Jiri Mestecky, Jan Novak
Hitoshi Suzuki, … , Jiri Mestecky, Jan Novak
Published May 26, 2009
Citation Information: J Clin Invest. 2009;119(6):1668-1677. https://doi.org/10.1172/JCI38468.
View: Text | PDF
Research Article

Aberrantly glycosylated IgA1 in IgA nephropathy patients is recognized by IgG antibodies with restricted heterogeneity

  • Text
  • PDF
Abstract

IgA nephropathy (IgAN) is characterized by circulating immune complexes composed of galactose-deficient IgA1 and a glycan-specific IgG antibody. These immune complexes deposit in the glomerular mesangium and induce the mesangioproliferative glomerulonephritis characteristic of IgAN. To define the precise specificities and molecular properties of the IgG antibodies, we generated EBV-immortalized IgG-secreting lymphocytes from patients with IgAN and found that the secreted IgG formed complexes with galactose-deficient IgA1 in a glycan-dependent manner. We cloned and sequenced the heavy- and light-chain antigen-binding domains of IgG specific for galactose-deficient IgA1 and identified an A to S substitution in the complementarity-determining region 3 of the variable region of the gene encoding the IgG heavy chain in IgAN patients. Furthermore, site-directed mutagenesis that reverted the residue to alanine reduced the binding of recombinant IgG to galactose-deficient IgA1. Finally, we developed a dot-blot assay for the glycan-specific IgG antibody that differentiated patients with IgAN from healthy and disease controls with 88% specificity and 95% sensitivity and found that elevated levels of this antibody in the sera of patients with IgAN correlated with proteinuria. Collectively, these findings indicate that glycan-specific antibodies are associated with the development of IgAN and may represent a disease-specific marker and potential therapeutic target.

Authors

Hitoshi Suzuki, Run Fan, Zhixin Zhang, Rhubell Brown, Stacy Hall, Bruce A. Julian, W. Winn Chatham, Yusuke Suzuki, Robert J. Wyatt, Zina Moldoveanu, Jeannette Y. Lee, James Robinson, Milan Tomana, Yasuhiko Tomino, Jiri Mestecky, Jan Novak

×

Figure 3

Characterization of immune-complex formation.

Options: View larger image (or click on image) Download as PowerPoint
Characterization of immune-complex formation.
(A) Size-exclusion chromat...
(A) Size-exclusion chromatography and ELISA analysis of immune complexes formed in vitro with monomeric Gal-deficient IgA1 (50 μg) and glycan-specific IgG (50 μg) from 3 patients with IgAN (filled circles) or 3 healthy controls (open circles). IgG and monomeric (m) and dimeric (d) IgA1 standards were used to calibrate the column. Glycan-specific IgG from IgAN patients exhibited more binding to Gal-deficient IgA1 as compared with the binding of IgG from healthy controls. Immune complexes likely contained 1 or 2 molecules of IgA1 bound to 1 molecule of IgG. Data are shown as mean ± SD. (B) Dot-blot analysis showed that IgG secreted by cell lines from 5 of the 6 IgAN patients exhibited high binding to Gal-deficient IgA1; cell line no. 3081 from an IgAN patient and cells from 5 of the 6 healthy controls exhibited low binding. (C) Findings shown in Table 1 were confirmed by densitometrical analysis. P < 0.01; P values were generated using the 2-tailed Student’s t test. Data are shown as individual values and mean ± SD. Experiments were repeated 3 times with similar results.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts