Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
The T-box transcription factor Brachyury promotes epithelial-mesenchymal transition in human tumor cells
Romaine I. Fernando, … , Jeffrey Schlom, Claudia Palena
Romaine I. Fernando, … , Jeffrey Schlom, Claudia Palena
Published January 11, 2010
Citation Information: J Clin Invest. 2010;120(2):533-544. https://doi.org/10.1172/JCI38379.
View: Text | PDF
Research Article Oncology

The T-box transcription factor Brachyury promotes epithelial-mesenchymal transition in human tumor cells

  • Text
  • PDF
Abstract

Metastatic disease is responsible for the majority of human cancer deaths. Understanding the molecular mechanisms of metastasis is a major step in designing effective cancer therapeutics. Here we show that the T-box transcription factor Brachyury induces in tumor cells epithelial-mesenchymal transition (EMT), an important step in the progression of primary tumors toward metastasis. Overexpression of Brachyury in human carcinoma cells induced changes characteristic of EMT, including upregulation of mesenchymal markers, downregulation of epithelial markers, and an increase in cell migration and invasion. Brachyury overexpression also repressed E-cadherin transcription, an effect partially mediated by Slug. Conversely, inhibition of Brachyury resulted in downregulation of mesenchymal markers and loss of cell migration and invasion and diminished the ability of human tumor cells to form lung metastases in a xenograft model. Furthermore, we found Brachyury to be overexpressed in various human tumor tissues and tumor cell lines compared with normal tissues. We also determined that the percentage of human lung tumor tissues positive for Brachyury expression increased with the stage of the tumor, indicating a potential association between Brachyury and tumor progression. The selective expression of Brachyury in tumor cells and its role in EMT and cancer progression suggest that Brachyury may be an attractive target for antitumor therapies.

Authors

Romaine I. Fernando, Mary Litzinger, Paola Trono, Duane H. Hamilton, Jeffrey Schlom, Claudia Palena

×

Figure 5

H460-Br.shRNA cells rescued by Brachyury or Slug overexpression.

Options: View larger image (or click on image) Download as PowerPoint
H460-Br.shRNA cells rescued by Brachyury or Slug overexpression.
(A) Bri...
(A) Bright field images of cells grown on plastic surface (top: original magnification, ×10) and immunofluorescence analysis of Plakoglobin (bottom: original magnification, ×20) are shown. The green signal represents the staining of the corresponding protein, and the blue signal represents the DAPI-stained nuclei. (B) Real-time PCR analysis for Brachyury and EMT markers and (C) cell migration and ECM invasion assay with H460-Br.shRNA coexpressing empty vector (pcDNA) or a human Brachyury-encoding vector (pBrachyury). (D) Expression of Brachyury and EMT markers and (E) cell migration and invasion assays with H460-Br.shRNA cells transiently transfected with control (pcDNA) or a human Slug-expressing vector (pSLUG). Error bars indicate SEM of triplicate measurements. *P < 0.05, **P < 0.01, ***P < 0.0001 for pcDNA versus pBrachyury or pSLUG.

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts