Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
CpG-containing immunostimulatory DNA sequences elicit TNF-α–dependent toxicity in rodents but not in humans
John D. Campbell, Yan Cho, Martyn L. Foster, Holger Kanzler, Melissa A. Kachura, Jeremy A. Lum, Marianne J. Ratcliffe, Atul Sathe, Andrew J. Leishman, Ash Bahl, Mark McHale, Robert L. Coffman, Edith M. Hessel
John D. Campbell, Yan Cho, Martyn L. Foster, Holger Kanzler, Melissa A. Kachura, Jeremy A. Lum, Marianne J. Ratcliffe, Atul Sathe, Andrew J. Leishman, Ash Bahl, Mark McHale, Robert L. Coffman, Edith M. Hessel
View: Text | PDF
Research Article Immunology

CpG-containing immunostimulatory DNA sequences elicit TNF-α–dependent toxicity in rodents but not in humans

  • Text
  • PDF
Abstract

CpG-containing immunostimulatory DNA sequences (ISS), which signal through TLR9, are being developed as a therapy for allergic indications and have proven to be safe and well tolerated in humans when administrated via the pulmonary route. In contrast, ISS inhalation has unexplained toxicity in rodents, which express TLR9 in monocyte/macrophage lineage cells as well as in plasmacytoid DCs (pDCs) and B cells, the principal TLR9-expressing cells in humans. We therefore investigated the mechanisms underlying this rodent-specific toxicity and its implications for humans. Mice responded to intranasally administered 1018 ISS, a representative B class ISS, with strictly TLR9-dependent toxicity, including lung inflammation and weight loss, that was fully reversible and pDC and B cell independent. Knockout mouse experiments demonstrated that ISS-induced toxicity was critically dependent on TNF-α, with IFN-α required for TNF-α induction. In contrast, human PBMCs, human alveolar macrophages, and airway-derived cells from Ascaris suum–allergic cynomolgus monkeys did not produce appreciable TNF-α in vitro in response to ISS stimulation. Moreover, sputum of allergic humans exposed to inhaled ISS demonstrated induction of IFN-inducible genes but minimal TNF-α induction. These data demonstrate that ISS induce rodent-specific TNF-α–dependent toxicity that is absent in humans and reflective of differential TLR9 expression patterns in rodents versus humans.

Authors

John D. Campbell, Yan Cho, Martyn L. Foster, Holger Kanzler, Melissa A. Kachura, Jeremy A. Lum, Marianne J. Ratcliffe, Atul Sathe, Andrew J. Leishman, Ash Bahl, Mark McHale, Robert L. Coffman, Edith M. Hessel

×

Figure 9

BAL cells from A. suum–allergic cynomolgus monkeys express and produce very low levels of TNF-α in response to ISS stimulation in vitro compared with the response to R848 stimulation.

Options: View larger image (or click on image) Download as PowerPoint
BAL cells from A. suum–allergic cynomolgus monkeys express and produce v...
BAL cells isolated from A. suum–sensitized and allergen-challenged monkeys were stimulated with the indicated doses of 1018 ISS, with 3.5 μM cODN C661, or with 10 μM R848 as a positive control for 6 hours prior to (A) gene expression analysis or (B) culture supernatant harvest. TNF-α gene levels are expressed as fold induction over stimulation with medium. TNF-α levels in culture supernatants were measured by ELISA. Median lines are shown. n = 6.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts