Abstract

Massive liver resection and small-for-size liver transplantation pose a therapeutic challenge, due to increased susceptibility of the remnant/graft to ischemia reperfusion injury (IRI) and impaired regeneration. We investigated the dual role of complement in IRI versus regeneration in mice. Complement component 3 (C3) deficiency and complement inhibition with complement receptor 2–complement receptor 1–related protein y (CR2-Crry, an inhibitor of C3 activation) provided protection from hepatic IRI, and while C3 deficiency also impaired liver regeneration following partial hepatectomy (PHx), the effect of CR2-Crry in this context was dose dependent. In a combined model of IRI and PHx, either C3 deficiency or high-dose CR2-Crry resulted in steatosis, severe hepatic injury, and high mortality, whereas low-dose CR2-Crry was protective and actually increased hepatic proliferative responses relative to control mice. Reconstitution experiments revealed an important role for the C3a degradation product acylation-stimulating protein (ASP) in the balance between inflammation/injury versus regeneration. Furthermore, liver regeneration was dependent on the putative ASP receptor, C5L2. Several potential mechanisms of hepatoprotection and recovery were identified in mice treated with low-dose CR2-Crry, including enhanced IL-6 expression and STAT3 activation, reduced hepatic ATP depletion, and attenuated oxidative stress. These data indicate that a threshold of complement activation, involving ASP and C5L2, promotes liver regeneration and suggest a balance between complement-dependent injury and regeneration.

Authors

Songqing He, Carl Atkinson, Fei Qiao, Katherine Cianflone, Xiaoping Chen, Stephen Tomlinson

×

Download this citation for these citation managers:

Or, download this citation in these formats:

If you experience problems using these citation formats, send us feedback.

Advertisement