Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Adult neural stem cells expressing IL-10 confer potent immunomodulation and remyelination in experimental autoimmune encephalitis
Jingxian Yang, … , Abdolmohamad Rostami, Guang-Xian Zhang
Jingxian Yang, … , Abdolmohamad Rostami, Guang-Xian Zhang
Published November 2, 2009
Citation Information: J Clin Invest. 2009;119(12):3678-3691. https://doi.org/10.1172/JCI37914.
View: Text | PDF
Research Article Autoimmunity

Adult neural stem cells expressing IL-10 confer potent immunomodulation and remyelination in experimental autoimmune encephalitis

  • Text
  • PDF
Abstract

Adult neural stem cells (aNSCs) derived from the subventricular zone of the brain show therapeutic effects in EAE, an animal model of the chronic inflammatory neurodegenerative disease MS; however, the beneficial effects are modest. One critical weakness of aNSC therapy may be an insufficient antiinflammatory effect. Here, we demonstrate that i.v. or i.c.v. injection of aNSCs engineered to secrete IL-10 (IL-10–aNSCs), a potent immunoregulatory cytokine, induced more profound functional and pathological recovery from ongoing EAE than that with control aNSCs. IL-10–aNSCs exhibited enhanced antiinflammatory effects in the periphery and inflammatory foci in the CNS compared with control aNSCs, more effectively reducing myelin damage, a hallmark of MS. When compared with mice treated with control aNSCs, those treated with IL-10–aNSCs demonstrated differentiation of transplanted cells into greater numbers of oligodendrocytes and neurons but fewer astrocytes, thus enhancing exogenous remyelination and neuron/axonal growth. Finally, IL-10–aNSCs converted a hostile environment to one supportive of neurons/oligodendrocytes, thereby promoting endogenous remyelination. Thus, aNSCs engineered to express IL-10 show enhanced ability to induce immune suppression, remyelination, and neuronal repair and may represent a novel approach that can substantially improve the efficacy of neural stem cell–based therapy in EAE/MS.

Authors

Jingxian Yang, Zhilong Jiang, Denise C. Fitzgerald, Cungen Ma, Shuo Yu, Hongmei Li, Zhao Zhao, Yonghai Li, Bogoljub Ciric, Mark Curtis, Abdolmohamad Rostami, Guang-Xian Zhang

×

Figure 9

IL-10–aNSCs selectively expand neuron and oligodendrocyte populations in vivo.

Options: View larger image (or click on image) Download as PowerPoint
IL-10–aNSCs selectively expand neuron and oligodendrocyte populations in...
Mice treated with aNSCs i.v. at day 22 p.i. were sacrificed at day 78 p.t., and brains were harvested for immunohistology. The same region of the corpus callosum was examined in all groups, as shown in Supplemental Figure 3. (A–D) Immunofluorescence images of the brain in aNSC-treated mice at day 78 p.t. Cells colabeled with GFP (green) and neural-specific markers (red, blue) were identified as differentiated cells derived from transplanted aNSCs (arrows with solid lines), which were morphologically indistinguishable from respective endogenous cells (arrows with dashed lines). Some of the transplanted aNSCs remained nestin+ (undifferentiated). Original magnification, ×40 (A–D).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts