Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Glucocorticoid protects rodent hearts from ischemia/reperfusion injury by activating lipocalin-type prostaglandin D synthase–derived PGD2 biosynthesis
Satori Tokudome, … , Hirotoshi Tanaka, Keiichi Fukuda
Satori Tokudome, … , Hirotoshi Tanaka, Keiichi Fukuda
Published May 18, 2009
Citation Information: J Clin Invest. 2009;119(6):1477-1488. https://doi.org/10.1172/JCI37413.
View: Text | PDF
Research Article Cardiology

Glucocorticoid protects rodent hearts from ischemia/reperfusion injury by activating lipocalin-type prostaglandin D synthase–derived PGD2 biosynthesis

  • Text
  • PDF
Abstract

Lipocalin-type prostaglandin D synthase (L-PGDS), which was originally identified as an enzyme responsible for PGD2 biosynthesis in the brain, is highly expressed in the myocardium, including in cardiomyocytes. However, the factors that control expression of the gene encoding L-PGDS and the pathophysiologic role of L-PGDS in cardiomyocytes are poorly understood. In the present study, we demonstrate that glucocorticoids, which act as repressors of prostaglandin biosynthesis in most cell types, upregulated the expression of L-PGDS together with cytosolic calcium-dependent phospholipase A2 and COX2 via the glucocorticoid receptor (GR) in rat cardiomyocytes. Accordingly, PGD2 was the most prominently induced prostaglandin in vivo in mouse hearts and in vitro in cultured rat cardiomyocytes after exposure to GR-selective agonists. In isolated Langendorff-perfused mouse hearts, dexamethasone alleviated ischemia/reperfusion injury. This cardioprotective effect was completely abrogated by either pharmacologic inhibition of COX2 or disruption of the gene encoding L-PGDS. In in vivo ischemia/reperfusion experiments, dexamethasone reduced infarct size in wild-type mice. This cardioprotective effect of dexamethasone was markedly reduced in L-PGDS–deficient mice. In cultured rat cardiomyocytes, PGD2 protected against cell death induced by anoxia/reoxygenation via the D-type prostanoid receptor and the ERK1/2-mediated pathway. Taken together, these results suggest what we believe to be a novel interaction between glucocorticoid-GR signaling and the cardiomyocyte survival pathway mediated by the arachidonic acid cascade.

Authors

Satori Tokudome, Motoaki Sano, Ken Shinmura, Tomohiro Matsuhashi, Shintaro Morizane, Hidenori Moriyama, Kayoko Tamaki, Kentaro Hayashida, Hiroki Nakanishi, Noritada Yoshikawa, Noriaki Shimizu, Jin Endo, Takaharu Katayama, Mitsushige Murata, Shinsuke Yuasa, Ruri Kaneda, Kengo Tomita, Naomi Eguchi, Yoshihiro Urade, Koichiro Asano, Yasunori Utsunomiya, Takeshi Suzuki, Ryo Taguchi, Hirotoshi Tanaka, Keiichi Fukuda

×

Full Text PDF

Download PDF (2.86 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts