Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Antibacterial activity of human neutrophil defensins in experimental infections in mice is accompanied by increased leukocyte accumulation.
M M Welling, … , E K Pauwels, W Calame
M M Welling, … , E K Pauwels, W Calame
Published October 15, 1998
Citation Information: J Clin Invest. 1998;102(8):1583-1590. https://doi.org/10.1172/JCI3664.
View: Text | PDF
Research Article

Antibacterial activity of human neutrophil defensins in experimental infections in mice is accompanied by increased leukocyte accumulation.

  • Text
  • PDF
Abstract

Neutrophil defensins (or human neutrophil peptides-HNP) are major constituents of the azurophilic granules of human neutrophils and have been shown to display broad-spectrum antimicrobial activity. Other activities of these defensins, which are released from stimulated neutrophils, include cytotoxic, stimulatory, and chemotactic activities toward a variety of target cells. We studied the potential use of HNP-1 for antibacterial therapy of experimental bacterial infections in mice. In experimental peritoneal Klebsiella pneumoniae infections in mice, HNP-1 injection was shown to markedly reduce bacterial numbers in the infected peritoneal cavity 24 h after infection. This antibacterial effect was found to be associated with an increased influx of macrophages, granulocytes, and lymphocytes into the peritoneal cavity. These leukocytes appeared to be a requirement for the antibacterial effect, since in leukocytopenic mice administration of HNP-1 did not display antibacterial activity. HNP-1 treatment also reduced bacterial numbers in experimental K. pneumoniae or Staphylococcus aureus thigh muscle infections. In this model, radiolabeled HNP-1 was found to accumulate at the site of infection, whereas most of the injected HNP-1 was rapidly removed from the circulation via renal excretion. These results demonstrate that neutrophil defensins display marked in vivo antibacterial activity in experimental infections in mice and that this activity appears to be mediated, at least in part, by local leukocyte accumulation.

Authors

M M Welling, P S Hiemstra, M T van den Barselaar, A Paulusma-Annema, P H Nibbering, E K Pauwels, W Calame

×

Full Text PDF

Download PDF (244.53 KB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts