Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
MT1-MMP and RECK are involved in human CD34+ progenitor cell retention, egress, and mobilization
Yaron Vagima, … , Arnon Nagler, Tsvee Lapidot
Yaron Vagima, … , Arnon Nagler, Tsvee Lapidot
Published February 9, 2009
Citation Information: J Clin Invest. 2009;119(3):492-503. https://doi.org/10.1172/JCI36541.
View: Text | PDF
Research Article Hematology

MT1-MMP and RECK are involved in human CD34+ progenitor cell retention, egress, and mobilization

  • Text
  • PDF
Abstract

The mechanisms governing hematopoietic progenitor cell mobilization are not fully understood. We report higher membrane type 1–MMP (MT1-MMP) and lower expression of the MT1-MMP inhibitor, reversion-inducing cysteine-rich protein with Kazal motifs (RECK), on isolated circulating human CD34+ progenitor cells compared with immature BM cells. The expression of MT1-MMP correlated with clinical mobilization of CD34+ cells in healthy donors and patients with lymphoid malignancies. Treatment with G-CSF further increased MT1-MMP and decreased RECK expression in human and murine hematopoietic cells in a PI3K/Akt-dependent manner, resulting in elevated MT1-MMP activity. Blocking MT1-MMP function by Abs or siRNAs impaired chemotaxis and homing of G-CSF–mobilized human CD34+ progenitors. The mobilization of immature and maturing human progenitors in chimeric NOD/SCID mice by G-CSF was inhibited by anti–MT1-MMP treatment, while RECK neutralization promoted motility and egress of BM CD34+ cells. BM c-kit+ cells from MT1-MMP–deficient mice also exhibited inferior chemotaxis, reduced homing and engraftment capacities, and impaired G-CSF–induced mobilization in murine chimeras. Membranal CD44 cleavage by MT1-MMP was enhanced following G-CSF treatment, reducing CD34+ cell adhesion. Accordingly, CD44-deficient mice had a higher frequency of circulating progenitors. Our results reveal that the motility, adhesion, homing, and mobilization of human hematopoietic progenitor cells are regulated in a cell-autonomous manner by dynamic and opposite changes in MT1-MMP and RECK expression.

Authors

Yaron Vagima, Abraham Avigdor, Polina Goichberg, Shoham Shivtiel, Melania Tesio, Alexander Kalinkovich, Karin Golan, Ayelet Dar, Orit Kollet, Isabelle Petit, Orly Perl, Ester Rosenthal, Igor Resnick, Izhar Hardan, Yechiel N. Gellman, David Naor, Arnon Nagler, Tsvee Lapidot

×

Figure 8

Proposed mechanism of MT1-MMP–mediated HPC mobilization.

Options: View larger image (or click on image) Download as PowerPoint
Proposed mechanism of MT1-MMP–mediated HPC mobilization.
In the absence ...
In the absence of mobilizing stimuli (e.g., G-CSF), proteolytic activities of MT1-MMP, MMP-2, and MMP-9 are relatively low due to inhibition by RECK. Functional membranal CD44 contributes to progenitor cell adhesion to the BM components (retention). G-CSF signaling induces PI3K-mediated Akt phosphorylation, increasing MT1-MMP and decreasing RECK expression. The opposed changes in MT1-MMP and RECK levels result in MT1-MMP–mediated CD44 proteolysis as well as MMP-2 and MMP-9 secretion and activation. Collectively, these changes reduce progenitor cell retention and facilitate their egress and mobilization.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts