Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI3544

HLA-restricted, processing- and metabolism-independent pathway of drug recognition by human alpha beta T lymphocytes.

M P Zanni, S von Greyerz, B Schnyder, K A Brander, K Frutig, Y Hari, S Valitutti, and W J Pichler

Institute of Immunology and Allergology, Inselspital, Bern, Switzerland.

Find articles by Zanni, M. in: PubMed | Google Scholar

Institute of Immunology and Allergology, Inselspital, Bern, Switzerland.

Find articles by von Greyerz, S. in: PubMed | Google Scholar

Institute of Immunology and Allergology, Inselspital, Bern, Switzerland.

Find articles by Schnyder, B. in: PubMed | Google Scholar

Institute of Immunology and Allergology, Inselspital, Bern, Switzerland.

Find articles by Brander, K. in: PubMed | Google Scholar

Institute of Immunology and Allergology, Inselspital, Bern, Switzerland.

Find articles by Frutig, K. in: PubMed | Google Scholar

Institute of Immunology and Allergology, Inselspital, Bern, Switzerland.

Find articles by Hari, Y. in: PubMed | Google Scholar

Institute of Immunology and Allergology, Inselspital, Bern, Switzerland.

Find articles by Valitutti, S. in: PubMed | Google Scholar

Institute of Immunology and Allergology, Inselspital, Bern, Switzerland.

Find articles by Pichler, W. in: PubMed | Google Scholar

Published October 15, 1998 - More info

Published in Volume 102, Issue 8 on October 15, 1998
J Clin Invest. 1998;102(8):1591–1598. https://doi.org/10.1172/JCI3544.
© 1998 The American Society for Clinical Investigation
Published October 15, 1998 - Version history
View PDF
Abstract

T cell recognition of drugs is explained by the hapten-carrier model, implying covalent binding of chemically reactive drugs to carrier proteins. However, most drugs are nonreactive and their recognition by T cells is unclear. We generated T cell clones from allergic individuals specific to sulfamethoxazole, lidocaine (nonreactive drugs), and cef-triaxone (per se reactive beta-lactam antibiotic) and compared the increase of intracellular free calcium concentration ([Ca2+]i) and the kinetics of T cell receptor (TCR) downregulation of these clones by drug-specific stimulations. All drugs tested induced an MHC-restricted, dose- and antigen-presenting cell (APC)-dependent TCR downregulation on specific CD4(+) and CD8(+) T cell clones. Chemically nonreactive drugs elicited an immediate and sustained [Ca2+]i increase and a rapid TCR downregulation, but only when these drugs were added in solution to APC and clone. In contrast, the chemically reactive hapten ceftriaxone added in solution needed > 6 h to induce TCR downregulation. When APC were preincubated with ceftriaxone, a rapid downregulation of the TCR and cytokine secretion was observed, suggesting a stable presentation of a covalently modified peptide. Our data demonstrate two distinct pathways of drug presentation to activated specific T cells. The per se reactive ceftriaxone is presented after covalent binding to carrier peptides. Nonreactive drugs can be recognized by specific alphabeta+ T cells via a nonconventional presentation pathway based on a labile binding of the drug to MHC-peptide complexes.

Version history
  • Version 1 (October 15, 1998): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts