Abstract

Glycogen synthase kinase–3 (GSK-3) is a widely expressed and highly conserved serine/threonine protein kinase encoded by 2 genes, GSK3A and GSK3B. GSK-3 is thought to be involved in tissue repair and fibrogenesis, but its role in these processes is currently unknown. To investigate the function of GSK-3β in fibroblasts, we generated mice harboring a fibroblast-specific deletion of Gsk3b and evaluated their wound-healing and fibrogenic responses. We have shown that Gsk3b-conditional-KO mice (Gsk3b-CKO mice) exhibited accelerated wound closure, increased fibrogenesis, and excessive scarring compared with control mice. In addition, Gsk3b-CKO mice showed elevated collagen production, decreased cell apoptosis, elevated levels of profibrotic α-SMA, and increased myofibroblast formation during wound healing. In cultured Gsk3b-CKO fibroblasts, adhesion, spreading, migration, and contraction were enhanced. Both Gsk3b-CKO mice and fibroblasts showed elevated expression and production of endothelin-1 (ET-1) compared with control mice and cells. Antagonizing ET-1 reversed the phenotype of Gsk3b-CKO fibroblasts and mice. Thus, GSK-3β appears to control the progression of wound healing and fibrosis by modulating ET-1 levels. These results suggest that targeting the GSK-3β pathway or ET-1 may be of benefit in controlling tissue repair and fibrogenic responses in vivo.

Authors

Mohit Kapoor, Shangxi Liu, Xu Shi-wen, Kun Huh, Matthew McCann, Christopher P. Denton, James R. Woodgett, David J. Abraham, Andrew Leask

×

Download this citation for these citation managers:

Or, download this citation in these formats:

If you experience problems using these citation formats, send us feedback.

Advertisement