Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Suppression of transcription factor early growth response 1 reduces herpes simplex virus lethality in mice
Shih-Heng Chen, … , Ching Li, Shun-Hua Chen
Shih-Heng Chen, … , Ching Li, Shun-Hua Chen
Published September 2, 2008
Citation Information: J Clin Invest. 2008;118(10):3470-3477. https://doi.org/10.1172/JCI35114.
View: Text | PDF
Research Article Virology

Suppression of transcription factor early growth response 1 reduces herpes simplex virus lethality in mice

  • Text
  • PDF
Abstract

Herpes simplex virus type 1 (HSV-1) infection is the most common cause of sporadic, fatal encephalitis, but current understanding of how the virus interacts with cellular factors to regulate disease progression is limited. Here, we show that HSV-1 infection induced the expression of the cellular transcription factor early growth response 1 (Egr-1) in a human neuronal cell line. Egr-1 increased viral replication by activating promoters of viral productive cycle genes through binding to its corresponding sequences in the viral promoters. Mouse studies confirmed that Egr-1 expression was enhanced in HSV-1–infected brains and that Egr-1 functions to promote viral replication in embryonic fibroblasts. Furthermore, Egr-1 deficiency or knockdown of Egr-1 by a DNA-based enzyme greatly reduced the mortality of HSV-1–infected mice by decreasing viral loads in tissues. This study provides what we believe is the first evidence that Egr-1 increases the mortality of HSV-1 encephalitis by enhancing viral replication. Moreover, blocking this cellular machinery exploited by the virus could prevent host mortality.

Authors

Shih-Heng Chen, Hui-Wen Yao, I-Te Chen, Biehuoy Shieh, Ching Li, Shun-Hua Chen

×

Figure 6

Knockdown of Egr-1 reduces the viral loads in tissues and mortality of HSV-1–infected mice.

Options: View larger image (or click on image) Download as PowerPoint
Knockdown of Egr-1 reduces the viral loads in tissues and mortality of H...
(A) The viral loads in the brains, trigeminal ganglia, and eyes of wild-type C57BL/6 mice treated with a DNAzyme blocking Egr-1 expression (Egr-1 DNAzyme, n = 6) or a scramble oligomer (scramble, n = 6) and infected with strain 294.1 at day 5 p.i. Data show mean ± SEM. *P = 0.026, Mann-Whitney U test. (B) Deaths of infected mice treated with the Egr-1 DNAzyme (n = 6) or the scramble oligomer (n = 6). †P = 0.05, log-rank test.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts