Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Activated endothelial cells elicit paracrine induction of epithelial chloride secretion. 6-Keto-PGF1alpha is an epithelial secretagogue.
E D Blume, … , G L Stahl, S P Colgan
E D Blume, … , G L Stahl, S P Colgan
Published September 15, 1998
Citation Information: J Clin Invest. 1998;102(6):1161-1172. https://doi.org/10.1172/JCI3465.
View: Text | PDF
Research Article

Activated endothelial cells elicit paracrine induction of epithelial chloride secretion. 6-Keto-PGF1alpha is an epithelial secretagogue.

  • Text
  • PDF
Abstract

Endothelial cells play a central role in the coordination of the inflammatory response. In mucosal tissue, such as the lung and intestine, endothelia are anatomically positioned in close proximity to epithelia, providing the potential for cell-cell crosstalk. Thus, in this study endothelial-epithelial biochemical crosstalk pathways were studied using a human intestinal crypt cell line (T84) grown in noncontact coculture with human umbilical vein endothelia. Exposure of such cocultures to endothelial-specific agonists (LPS) resulted in activation of epithelial electrogenic Cl- secretion and vectorial fluid transport. Subsequent experiments revealed that in response to diverse stimuli (LPS, IL-1alpha, TNF-alpha, hypoxia), endothelia produce and secrete a small, stable epithelial secretagogue into conditioned media supernatants. Further experiments identified this secretagogue as 6-keto-PGF1alpha, a stable hydrolysis product of prostacyclin (PGI2). Results obtained with synthetic prostanoids indicated that 6-keto-PGF1alpha (EC50 = 80 nM) and PGI2 stable analogues (EC50 = 280 nM) activate the same basolaterally polarized, Ca2+-coupled epithelial receptor. In summary, these findings reveal a previously unappreciated 6-keto-PGF1alpha receptor on intestinal epithelia, the ligation of which results in activation of electrogenic Cl- secretion. In addition, these data reveal a novel action for the prostacyclin hydrolysis product 6-keto-PGF1alpha and provide a potential endothelial- epithelial crosstalk pathway in mucosal tissue.

Authors

E D Blume, C T Taylor, P F Lennon, G L Stahl, S P Colgan

×

Full Text PDF

Download PDF (325.97 KB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts