Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Acquired resistance to EGFR tyrosine kinase inhibitors in cancer cells is mediated by loss of IGF-binding proteins
Marta Guix, … , Carlos L. Arteaga, Jeffrey A. Engelman
Marta Guix, … , Carlos L. Arteaga, Jeffrey A. Engelman
Published June 20, 2008
Citation Information: J Clin Invest. 2008;118(7):2609-2619. https://doi.org/10.1172/JCI34588.
View: Text | PDF
Research Article

Acquired resistance to EGFR tyrosine kinase inhibitors in cancer cells is mediated by loss of IGF-binding proteins

  • Text
  • PDF
Abstract

Although some cancers are initially sensitive to EGFR tyrosine kinase inhibitors (TKIs), resistance invariably develops. We investigated mechanisms of acquired resistance to the EGFR TKI gefitinib by generating gefitinib-resistant (GR) A431 squamous cancer cells. In GR cells, gefitinib reduced phosphorylation of EGFR, ErbB-3, and Erk but not Akt. These cells also showed hyperphosphorylation of the IGFI receptor (IGFIR) and constitutive association of IRS-1 with PI3K. Inhibition of IGFIR signaling disrupted the association of IRS-1 with PI3K and restored the ability of gefitinib to downregulate PI3K/Akt signaling and to inhibit GR cell growth. Gene expression analyses revealed that GR cells exhibited markedly reduced IGF-binding protein 3 (IGFBP-3) and IGFBP-4 RNA. Addition of recombinant IGFBP-3 restored the ability of gefitinib to downregulate PI3K/Akt signaling and to inhibit cell growth. Finally, gefitinib treatment of mice with A431 xenografts in combination with an IGFIR-specific monoclonal antibody prevented tumor recurrence, whereas each drug given alone was unable to do so. These data suggest that loss of expression of IGFBPs in tumor cells treated with EGFR TKIs derepresses IGFIR signaling, which in turn mediates resistance to EGFR antagonists. Moreover, combined therapeutic inhibition of EGFR and IGFIR may abrogate this acquired mechanism of drug resistance and is thus worthy of prospective clinical investigation.

Authors

Marta Guix, Anthony C. Faber, Shizhen Emily Wang, Maria Graciela Olivares, Youngchul Song, Sherman Qu, Cammie Rinehart, Brenda Seidel, Douglas Yee, Carlos L. Arteaga, Jeffrey A. Engelman

×

Figure 4

IGFBPs are downregulated in GR cells.

Options: View larger image (or click on image) Download as PowerPoint
IGFBPs are downregulated in GR cells.
(A) Parental and A431 GR cells (10...
(A) Parental and A431 GR cells (106 cells) were incubated for 24 hours in serum-free medium. The conditioned medium (C.M.) was concentrated by ultrafiltration, and IGF-I and IGF-II levels were determined by immunoassay as indicated in Methods. Bars represent the mean ± SD of 3 experiments. (B) Left panel: conditioned medium from 2 × 106 parental and A431 GR cells was collected after 24 hours incubation and concentrated 20-fold by ultrafiltration. Medium was subjected to electrophoresis under nonreducing conditions, transferred to a nitrocellulose membrane, and incubated with 125I–IGF-I overnight at 4°C. Signal was captured with a phosphorimager. Human serum and MCF-7 cells were used as positive controls for 125I–IGF-I binding and IGFBP-4. Right panel: conditioned medium or 50 μg total protein from whole-cell lysates was subjected to immunoblot analysis with IGFBP-3, IGFBP-4, or Akt antibodies. (C) A431 GR cells were grown in 12-well plates in 0.5% FBS-containing medium for 72 hours with or without gefitinib (1 μM) and/or IGFBP-3 (1 μg/ml) and harvested by trypsinization. Cell numbers were determined with a Coulter Counter. Error bars represent the mean ± SD of 3 wells. Student’s t test was used for statistical comparisons. (D) A431 GR cells were treated with vehicle or gefitinib (1 μM) ± IGFBP-3 at the indicated concentrations for 6 hours. Cell lysates were prepared and analyzed with Western blots using the indicated antibodies.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts