Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Role of oxygen radicals generated by NADPH oxidase in apoptosis induced in human leukemia cells.
W Hiraoka, … , S J Chanock, Y Pommier
W Hiraoka, … , S J Chanock, Y Pommier
Published December 1, 1998
Citation Information: J Clin Invest. 1998;102(11):1961-1968. https://doi.org/10.1172/JCI3437.
View: Text | PDF
Research Article

Role of oxygen radicals generated by NADPH oxidase in apoptosis induced in human leukemia cells.

  • Text
  • PDF
Abstract

We have used a human leukemia cell line that, after homologous recombination knockout of the gp91-phox subunit of the phagocyte respiratory-burst oxidase cytochrome b-558, mimics chronic granulomatous disease (X-CGD) to study the role of oxygen radicals in apoptosis. Camptothecin (CPT), a topoisomerase I inhibitor, induced significantly more apoptosis in PLB-985 cells than in X-CGD cells. Sensitivity to CPT was enhanced after neutrophilic differentiation, but was lost after monocytic differentiation. No difference between the two cell lines was observed after treatment with other apoptosis inducers, including etoposide, ultraviolet radiation, ionizing radiation, hydrogen peroxide, or 7-hydroxystaurosporine. After granulocytic differentiation of both cell lines, CPT still induced apoptosis, suggesting independence from replication in fully differentiated and growth-arrested cells. Pyrrolidine dithiocarbamate (an antioxidant inhibitor of NF-kappaB) and catalase partially inhibited CPT-induced DNA fragmentation in granulocytic-differentiated PLB-985 cells, but had no effect in X-CGD cells. Flow cytometry analysis revealed that reactive oxygen intermediates were generated in CPT-treated PLB-985 cells. These data indicate that oxygen radicals generated by NADPH oxidase may contribute directly or indirectly to CPT-induced apoptosis in human leukemia and in neutrophilic-differentiated cells.

Authors

W Hiraoka, N Vazquez, W Nieves-Neira, S J Chanock, Y Pommier

×

Full Text PDF | Download (373.16 KB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts