Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Implantation of olfactory ensheathing cells promotes neuroplasticity in murine models of stroke
Woei-Cherng Shyu, … , Chang-Hai Tsai, Hung Li
Woei-Cherng Shyu, … , Chang-Hai Tsai, Hung Li
Published June 5, 2008
Citation Information: J Clin Invest. 2008;118(7):2482-2495. https://doi.org/10.1172/JCI34363.
View: Text | PDF
Research Article Neuroscience

Implantation of olfactory ensheathing cells promotes neuroplasticity in murine models of stroke

  • Text
  • PDF
Abstract

Murine olfactory ensheathing cells (OECs) promote central nervous system axonal regeneration in models of spinal cord injury. We investigated whether OECs could induce a neuroplastic effect to improve the neurological dysfunction caused by hypoxic/ischemic stress. In this study, human OECs/olfactory nerve fibroblasts (hOECs/ONFs) specifically secreted trophic factors including stromal cell–derived factor–1α (SDF-1α). Rats with intracerebral hOEC/ONF implantation showed more improvement on behavioral measures of neurological deficit following stroke than control rats. [18F]fluoro-2-deoxyglucose PET (FDG-PET) showed increased glucose metabolic activity in the hOEC/ONF-treated group compared with controls. In mice, transplanted hOECs/ONFs and endogenous homing stem cells including intrinsic neural progenitor cells and bone marrow stem cells colocalized with specific neural and vascular markers, indicating stem cell fusion. Both hOECs/ONFs and endogenous homing stem cells enhanced neuroplasticity in the rat and mouse ischemic brain. Upregulation of SDF-1α and CXCR4 in hOECs/ONFs promoted neurite outgrowth of cocultured primary cortical neurons under oxygen glucose deprivation conditions and in stroke animals through upregulation of cellular prion protein (PrPC) expression. Therefore, the upregulation of SDF-1α and the enhancement of CXCR4 and PrPC interaction induced by hOEC/ONF implantation mediated neuroplastic signals in response to hypoxia and ischemia.

Authors

Woei-Cherng Shyu, Demeral David Liu, Shinn-Zong Lin, Wen-Wen Li, Ching-Yuan Su, Ying-Chen Chang, Hsiao-Jung Wang, Hsing-Won Wang, Chang-Hai Tsai, Hung Li

×

Figure 1

Phenotypic characterization of hOECs/ONFs.

Options: View larger image (or click on image) Download as PowerPoint
Phenotypic characterization of hOECs/ONFs.
(A) The appearance of hOECs/O...
(A) The appearance of hOECs/ONFs by phase-contrast microscopy was either spindle shaped (arrow) or astrocyte-like (arrowhead). (B) Immunofluorescence colocalization analysis of hOECs/ONFs showed coexpression of p75 and GFAP, p75 and FN, p75 and S100, and GFAP and S100. (C) The proteins identified in our study as being produced by hOECs/ONFs including SDF-1α and its receptor, CXCR4, were coexpressed with p75 and GFAP in a double immunofluorescence study in hOECs/ONFs. Scale bars: 50 μm.
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts