Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Next-Generation Sequencing in Medicine (Upcoming)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Overexpression of ABCA1 reduces amyloid deposition in the PDAPP mouse model of Alzheimer disease
Suzanne E. Wahrle, … , Steven M. Paul, David M. Holtzman
Suzanne E. Wahrle, … , Steven M. Paul, David M. Holtzman
Published January 17, 2008
Citation Information: J Clin Invest. 2008;118(2):671-682. https://doi.org/10.1172/JCI33622.
View: Text | PDF
Research Article Neuroscience

Overexpression of ABCA1 reduces amyloid deposition in the PDAPP mouse model of Alzheimer disease

  • Text
  • PDF
Abstract

APOE genotype is a major genetic risk factor for late-onset Alzheimer disease (AD). ABCA1, a member of the ATP-binding cassette family of active transporters, lipidates apoE in the CNS. Abca1–/– mice have decreased lipid associated with apoE and increased amyloid deposition in several AD mouse models. We hypothesized that mice overexpressing ABCA1 in the brain would have increased lipidation of apoE-containing lipoproteins and decreased amyloid deposition. To address these hypotheses, we created PrP-mAbca1 Tg mice that overexpress mouse Abca1 throughout the brain under the control of the mouse prion promoter. We bred the PrP-mAbca1 mice to the PDAPP AD mouse model, a transgenic line overexpressing a mutant human amyloid precursor protein. PDAPP/Abca1 Tg mice developed a phenotype remarkably similar to that seen in PDAPP/Apoe–/– mice: there was significantly less amyloid β-peptide (Aβ) deposition, a redistribution of Aβ to the hilus of the dentate gyrus in the hippocampus, and an almost complete absence of thioflavine S–positive amyloid plaques. Analyses of CSF from PrP-mAbca1 Tg mice and media conditioned by PrP-mAbca1 Tg primary astrocytes demonstrated increased lipidation of apoE-containing particles. These data support the conclusions that increased ABCA1-mediated lipidation of apoE in the CNS can reduce amyloid burden and that increasing ABCA1 function may have a therapeutic effect on AD.

Authors

Suzanne E. Wahrle, Hong Jiang, Maia Parsadanian, Jungsu Kim, Aimin Li, Amanda Knoten, Sanjay Jain, Veronica Hirsch-Reinshagen, Cheryl L. Wellington, Kelly R. Bales, Steven M. Paul, David M. Holtzman

×

Full Text PDF | Download (1.25 MB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts