Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Correction of ClC-1 splicing eliminates chloride channelopathy and myotonia in mouse models of myotonic dystrophy
Thurman M. Wheeler, … , Robert T. Dirksen, Charles A. Thornton
Thurman M. Wheeler, … , Robert T. Dirksen, Charles A. Thornton
Published November 15, 2007
Citation Information: J Clin Invest. 2007;117(12):3952-3957. https://doi.org/10.1172/JCI33355.
View: Text | PDF
Research Article Genetics

Correction of ClC-1 splicing eliminates chloride channelopathy and myotonia in mouse models of myotonic dystrophy

  • Text
  • PDF
Abstract

In myotonic dystrophy (dystrophia myotonica [DM]), an increase in the excitability of skeletal muscle leads to repetitive action potentials, stiffness, and delayed relaxation. This constellation of features, collectively known as myotonia, is associated with abnormal alternative splicing of the muscle-specific chloride channel (ClC-1) and reduced conductance of chloride ions in the sarcolemma. However, the mechanistic basis of the chloride channelopathy and its relationship to the development of myotonia are uncertain. Here we show that a morpholino antisense oligonucleotide (AON) targeting the 3′ splice site of ClC-1 exon 7a reversed the defect of ClC-1 alternative splicing in 2 mouse models of DM. By repressing the inclusion of this exon, the AON restored the full-length reading frame in ClC-1 mRNA, upregulated the level of ClC-1 mRNA, increased the expression of ClC-1 protein in the surface membrane, normalized muscle ClC-1 current density and deactivation kinetics, and eliminated myotonic discharges. These observations indicate that the myotonia and chloride channelopathy observed in DM both result from abnormal alternative splicing of ClC-1 and that antisense-induced exon skipping offers a powerful method for correcting alternative splicing defects in DM.

Authors

Thurman M. Wheeler, John D. Lueck, Maurice S. Swanson, Robert T. Dirksen, Charles A. Thornton

×

Full Text PDF | Download (723.58 KB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts