Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Renin inhibition reduces hypercholesterolemia-induced atherosclerosis in mice
Hong Lu, … , Lisa A. Cassis, Alan Daugherty
Hong Lu, … , Lisa A. Cassis, Alan Daugherty
Published February 14, 2008
Citation Information: J Clin Invest. 2008;118(3):984-993. https://doi.org/10.1172/JCI32970.
View: Text | PDF
Research Article Cardiology

Renin inhibition reduces hypercholesterolemia-induced atherosclerosis in mice

  • Text
  • PDF
Abstract

The role of the renin angiotensin system (RAS) in atherosclerosis is complex because of the involvement of multiple peptides and receptors. Renin is the rate-limiting enzyme in the production of all angiotensin peptides. To determine the effects of renin inhibition on atherosclerosis, we administered the novel renin inhibitor aliskiren over a broad dose range to fat-fed LDL receptor–deficient (Ldlr–/–) mice. Renin inhibition resulted in striking reductions of atherosclerotic lesion size in both the aortic arch and the root. Subsequent studies demonstrated that cultured macrophages expressed all components of the RAS. To determine the role of macrophage-derived angiotensin in the development of atherosclerosis, we transplanted renin-deficient bone marrow to irradiated Ldlr–/– mice and observed a profound decrease in the size of atherosclerotic lesions. In similar experiments, transplantation of bone marrow deficient for angiotensin II type 1a receptors failed to influence lesion development. We conclude that renin-dependent angiotensin production in macrophages does not act in an autocrine/paracrine manner. Furthermore, in vitro studies demonstrated that coculture with renin-expressing macrophages augmented monocyte adhesion to endothelial cells. Therefore, although previous work suggests that angiotensin peptides have conflicting effects on atherogenesis, we found that renin inhibition profoundly decreased lesion development in mice.

Authors

Hong Lu, Debra L. Rateri, David L. Feldman, Richard J. Charnigo Jr., Akiyoshi Fukamizu, Junji Ishida, Elizabeth G. Oesterling, Lisa A. Cassis, Alan Daugherty

×

Figure 1

Renin inhibition dose-dependently increased renal renin mRNA abundance.

Options: View larger image (or click on image) Download as PowerPoint
Renin inhibition dose-dependently increased renal renin mRNA abundance.
...
Renin mRNA abundance (renin/18S rRNA ratio) was quantified by real-time PCR (n = 5 per group). mRNA bands by gel electrophoresis are also shown; the lanes were run on the same gel but were noncontiguous. Data are mean ± SEM. *P < 0.0001 versus vehicle; #P < 0.0001 versus 2.5 mg/kg/d aliskiren.

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts