Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Aberrant Phex function in osteoblasts and osteocytes alone underlies murine X-linked hypophosphatemia
Baozhi Yuan, … , Yixia Xie, Marc K. Drezner
Baozhi Yuan, … , Yixia Xie, Marc K. Drezner
Published January 2, 2008
Citation Information: J Clin Invest. 2008;118(2):722-734. https://doi.org/10.1172/JCI32702.
View: Text | PDF
Research Article Bone biology

Aberrant Phex function in osteoblasts and osteocytes alone underlies murine X-linked hypophosphatemia

  • Text
  • PDF
Abstract

Patients with X-linked hypophosphatemia (XLH) and the hyp-mouse, a model of XLH characterized by a deletion in the Phex gene, manifest hypophosphatemia, renal phosphate wasting, and rickets/osteomalacia. Cloning of the PHEX/Phex gene and mutations in affected patients and hyp-mice established that alterations in PHEX/Phex expression underlie XLH. Although PHEX/Phex expression occurs primarily in osteoblast lineage cells, transgenic Phex expression in hyp-mouse osteoblasts fails to rescue the phenotype, suggesting that Phex expression at other sites underlies XLH. To establish whether abnormal Phex in osteoblasts and/or osteocytes alone generates the HYP phenotype, we created mice with a global Phex knockout (Cre-PhexΔflox/y mice) and conditional osteocalcin-promoted (OC-promoted) Phex inactivation in osteoblasts and osteocytes (OC-Cre-PhexΔflox/y). Serum phosphorus levels in Cre-PhexΔflox/y, OC-Cre-PhexΔflox/y, and hyp-mice were lower than those in normal mice. Kidney cell membrane phosphate transport in Cre-PhexΔflox/y, OC-Cre-PhexΔflox/y, and hyp-mice was likewise reduced compared with that in normal mice. Abnormal renal phosphate transport in Cre-PhexΔflox/y and OC-Cre-PhexΔflox/y mice was associated with increased bone production and serum FGF-23 levels and decreased kidney membrane type IIa sodium phosphate cotransporter protein, as was the case in hyp-mice. In addition, Cre-PhexΔflox/y, OC-Cre-PhexΔflox/y, and hyp-mice manifested comparable osteomalacia. These data provide evidence that aberrant Phex function in osteoblasts and/or osteocytes alone is sufficient to underlie the hyp-mouse phenotype.

Authors

Baozhi Yuan, Masanori Takaiwa, Thomas L. Clemens, Jian Q. Feng, Rajiv Kumar, Peter S. Rowe, Yixia Xie, Marc K. Drezner

×

Figure 3

Effects of Pi and PTH (300 μg/kg/d) stimulation on 25(OH)D-1α-hydroxylase mRNA, protein, and enzyme activity in knockout mice.

Options: View larger image (or click on image) Download as PowerPoint
Effects of Pi and PTH (300 μg/kg/d) stimulation on 25(OH)D-1α-hydroxylas...
(A) In the baseline state, hyp-mice and the knockouts failed to exhibit increased 25(OH)D-1α-hydroxylase activity despite significant hypophosphatemia. PTH significantly increased enzyme activity only in the normal mice and had no effect on 25(OH)D-1α-hydroxylase function in hyp-mice or both knockout mice compared with the corresponding normals. (B) In response to the prevailing hypophosphatemia in the baseline state, the hyp-mice and both knockouts manifested increased mRNA transcripts. In response to PTH stimulation, the hyp-mice and both knockouts exhibited enhancement of the mRNA transcripts similar to that observed in normal mice. (C) The increased mRNA in the hyp- and the knockout mice in the baseline state and following PTH stimulation did not result in enhanced translation of the 25(OH)D-1α-hydroxylase protein when compared with the corresponding normal mice. *P < 0.05, **P < 0.01 compared with corresponding normal mice.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts