Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Bile salt–dependent lipase interacts with platelet CXCR4 and modulates thrombus formation in mice and humans
Laurence Panicot-Dubois, … , Dominique Lombardo, Christophe Dubois
Laurence Panicot-Dubois, … , Dominique Lombardo, Christophe Dubois
Published November 21, 2007
Citation Information: J Clin Invest. 2007;117(12):3708-3719. https://doi.org/10.1172/JCI32655.
View: Text | PDF
Research Article Hematology

Bile salt–dependent lipase interacts with platelet CXCR4 and modulates thrombus formation in mice and humans

  • Text
  • PDF
Abstract

Bile salt–dependent lipase (BSDL) is an enzyme involved in the duodenal hydrolysis and absorption of cholesteryl esters. Although some BSDL is transported to blood, the role of circulating BSDL is unknown. Here, we demonstrate that BSDL is stored in platelets and released upon platelet activation. Because BSDL contains a region that is structurally homologous to the V3 loop of HIV-1, which binds to CXC chemokine receptor 4 (CXCR4), we hypothesized that BSDL might bind to CXCR4 present on platelets. In human platelets in vitro, both BSDL and a peptide corresponding to its V3-like loop induced calcium mobilization and enhanced thrombin-mediated platelet aggregation, spreading, and activated αIIbβ3 levels. These effects were abolished by CXCR4 inhibition. BSDL also increased the production of prostacyclin by human endothelial cells. In a mouse thrombosis model, BSDL accumulated at sites of vessel wall injury. When CXCR4 was antagonized, the accumulation of BSDL was inhibited and thrombus size was reduced. In BSDL–/– mice, calcium mobilization in platelets and thrombus formation were attenuated and tail bleeding times were increased in comparison with those of wild-type mice. We conclude that BSDL plays a role in optimal platelet activation and thrombus formation by interacting with CXCR4 on platelets.

Authors

Laurence Panicot-Dubois, Grace M. Thomas, Barbara C. Furie, Bruce Furie, Dominique Lombardo, Christophe Dubois

×

Figure 9

Involvement of CXCR4 in thrombus formation.

Options: View larger image (or click on image) Download as PowerPoint
Involvement of CXCR4 in thrombus formation.
Wild-type mice were infused ...
Wild-type mice were infused with Alexa Fluor 647–conjugated anti-mouse CD41 Fab fragment (0.25 μg/g mouse), pAbantipeptide (0.6 μg/g mouse), and Alexa Fluor 488–conjugated goat anti-rabbit antibody (0.6 μg/g mouse) prior to injury. (A) Top row: Thrombus formation after laser injury in the absence of AMD3100. Bottom row: Thrombus formation after laser injury following infusion of AMD3100. Fluorescence signal of accumulated anti-CD41 antibody, red; fluorescence signal of accumulated pAbantipeptide, green; merge, yellow. Original magnification, ×600. (B) Median BSDL (pAbantipeptide) integrated fluorescence intensity in laser-induced thrombi in wild-type mice before and after treatment as in A with AMD3100 (1.25 μg/g mouse). For A and B, 30 thrombi in 3 wild-type mice were analyzed.

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts