Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Immunostimulatory Tim-1–specific antibody deprograms Tregs and prevents transplant tolerance in mice
Nicolas Degauque, … , Xin Xiao Zheng, Terry B. Strom
Nicolas Degauque, … , Xin Xiao Zheng, Terry B. Strom
Published December 13, 2007
Citation Information: J Clin Invest. 2008;118(2):735-741. https://doi.org/10.1172/JCI32562.
View: Text | PDF
Research Article

Immunostimulatory Tim-1–specific antibody deprograms Tregs and prevents transplant tolerance in mice

  • Text
  • PDF
Abstract

T cell Ig mucin (Tim) molecules modulate CD4+ T cell responses. In keeping with the view that Tim-1 generates a stimulatory signal for CD4+ T cell activation, we hypothesized that an agonist Tim-1–specific mAb would intensify the CD4+ T cell–dependant allograft response. Unexpectedly, we determined that a particular Tim-1–specific mAb exerted reciprocal effects upon the commitment of alloactivated T cells to regulatory and effector phenotypes. Commitment to the Th1 and Th17 phenotypes was fostered, whereas commitment to the Treg phenotype was hindered. Moreover, ligation of Tim-1 in vitro effectively deprogrammed Tregs and thus produced Tregs unable to control T cell responses. Overall, the effects of the agonist Tim-1–specific mAb on the allograft response stemmed from enhanced expansion and survival of T effector cells; a capacity to deprogram natural Tregs; and inhibition of the conversion of naive CD4+ T cells into Tregs. The reciprocal effects of agonist Tim-1–specific mAbs upon effector T cells and Tregs serve to prevent allogeneic transplant tolerance.

Authors

Nicolas Degauque, Christophe Mariat, James Kenny, Dong Zhang, Wenda Gao, Minh Diem Vu, Sophoclis Alexopoulos, Mohammed Oukka, Dale T. Umetsu, Rosemarie H. DeKruyff, Vijay Kuchroo, Xin Xiao Zheng, Terry B. Strom

×

Full Text PDF | Download (919.93 KB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts